

APPENDIX A

PROJEC CLIENT		V ENG	GIN	EEI	RING	FLEISH I	PENSTOCK	EQUIPMENT	YPE <u>CA</u>	SE	9020	TRAG	CK EXC	CAVA	FOR
LOCAT				EST		E OF THE DATE (K WEST OF THE STEAMBOAT DITCH LOGGED BY: SAM SURFACE ELEV		ft)	≅4,9	90' (P	LATE A	A-1)	
Depth in Feet	Unified Soil Classification	Graphic Log	Sample	Sample Type	Sample No.	Consistency/ Density	Moisture	Visual Description	%-200	Liquid Limit	Plasticity Index	Pocket Pen. (tsf)	Dry Density (pcf)	Moisture Content %	Laboratory Tests
0 	SM		V	В	1A		MOIST	0'-8': <u>SITLY SAND</u> , mostly fine to coarse sand, non- plastic, strong brown							
8-	SM						MOIST	8'-11': <u>SILTY SAND WITH GRAVEL AND</u> <u>COBBLES</u> , some fine to coarse sand, some fine to coarse subrounded to rounded gravel and cobbles, trace boulders up to 21" nominal diameter, non- plastic, brown							
12 -	GP-GM GP						MOIST	Note: Redox staining visible at 7½-8')						
16 -								13'-19': <u>POORLY GRADED GRAVEL WITH</u> <u>BOULDERS, COBBLES, AND SAND, mostly</u> coarse gravel and nested cobbles and boulders, boulders greater than 4 ¹ / ₂ nominal diameter encountered, little fine to coarse sand, non-plastic, brown							
20 -				B	<u>1B</u>			TERMINATED AT 19 FEET, NO FREE WATER ENCOUNTERED.	- 3.8					4.6	G
24 -		DUND					SAMPLE	TYPE LABORATORY TE		\	NO	: A-2			

LABORATORY TESTS SG - Bulk Specific Gravity

G - Grain Size

A - Atterberg Limits

C - Consolidation MD - Moisture/Density

DS - Direct Shear

PROJECT FLEISH PENSTOCK-TMWA EQUIPMENT TYPE CASE 9020 CLIENT SHAW ENGINEERING CASE 9020 Content of the second sec														
LOCATI	ON N	W SI	DE OI	THE	PENSTOC		HE ACCESS ROAD							
PROJEC	T NO	. <u>18</u>	58		DATE <u>0</u>	4/14/16	_ LOGGED BY: <u>SAM</u> _ SURFACE ELEVA	ATION (1	ft)	<u>≅</u> 4,99	92' (P	LATE A	A-1)	
Depth in Feet	Unified Soil Classification	Graphic Log	Sample Sample Type	Sample No.	Consistency/ Density	Moisture	Visual Description	%-200	Liquid Limit	Plasticity Index	Pocket Pen. (tsf)	Dry Density (pcf)	Moisture Content %	Laboratory Tests
0 - - 4 - - - - - - - - - - - - - - - - -	SM		В	2A		MOIST	0'-9 ¹ /2': <u>SILTY SAND</u> , mostly fine to coarse sand, non-plastic, trace fine roots, dark brown to strong brown	21.0					11.8	G
- - 12 -	SM					MOIST	9½'-13': SILTY SAND WITH GRAVEL, COBBLES AND BOULDERS, mostly fine to coarse sand, little rounded cobbles and boulders up to 18" nominal diameter, non-plastic, strong brown							
	GP-GM		В	2B		MOIST	13'-16': POORLY GRADED GRAVEL WITH COBBLES, BOULDERS, SILT AND SAND, some fine to coarse rounded gravel and cobbles, few rounded boulders up to 20" nominal diameter, non- plastic, strong brown							
20 -							TERMINATED AT 16 FEET, NO FREE WATER ENCOUNTERED							
DEPT			WATE	R DATE	B - Bul	SAMPLE k Sample	E TYPE LABORATORY TES SG - Bulk Specific Grav A - Atterberg Limits		ΥE	NO.:	: A-2	2b		

A - Atterberg Limits G - Grain Size

Ā

Ţ

N.E.

C - Consolidation

- MD Moisture/Density
- DS Direct Shear

OJEC	CT NO	<u>. 18</u>	58		_ [4/14/16	LOGGED BY: <u>SAM</u> SURFACE ELEV	ATION (ft)	<u>≅5,0</u>	38' (P	LATE A	A-1)	
in Feet	Unified Soil Classification	Graphic Log	Sample Semulo Tuno	Comple Lype	Sample No.	Consistency/ Density	Moisture	Visual Description	%-200	Liquid Limit	Plasticity Index	Pocket Pen. (tsf)	Dry Density (pcf)	Moisture Content %	Laboratory
0 	SP-SM		E		A		MOIST	0'-7': <u>POORLY GRADED SAND WITH SILT AND</u> <u>GRAVEL</u> , mostly medium to coarse sand, little subangular gravel, few boulders up to 20 inches nominal diameter, non-plastic, brown Note: Sparse surface boulders up to 36" nominal diameter present at the ground surface.	11.9					9.0	G
- 8 - -	GM						MOIST	7'-11': <u>SILTY GRAVEL WITH SAND AND</u> <u>COBBLES</u> , some fine to coarse subrounded to angula gravel and cobbles up to 10" nominal diameter, some fine to coarse sand ,non-plastic, brown to greyish brown	r						
- 12 -	ROCK							11'-13': WEATHERED GRANODIORITE, crushed to intensely fractured, moderately hard to hard, friable to moderately strong, moderately weathered, light grey PRATICAL REFUSAL AT 13 FEET, NO FREE WATER ENCOUNTERED							
- 16 - -															
- 20 -															
- 24 -															

G - Grain Size C - Consolidation MD - Moisture/Density

DS - Direct Shear

Ā Ŧ N.E.

OJE	ст по	. 18	58			04/14/16	LOGGED BY: <u>SAM</u> SURFACE EL	EVATION	(ft)	<u>≅</u> 5,0)15' (F	PLATE A	A- 1)	
in Feet	Unified Soil Classification	Graphic Log	Sample Semple Tunn	Sample No.	Consistency/	Vensity Moisture	Visual Description	%-200	Liquid Limit	Plasticity Index	Pocket Pen. (tsf)	Dry Density (pcf)	Moisture Content %	Laboratory Tests
0	SM					MOIST	0'-1½': <u>SILTY SAND FILL</u> , mostly fine to mediu sand, non-plastic, strong brown	m						
4 -	SM					MOIST	Note: Barbed wired encountered in upper 1 foot o soil profile 1½-5': <u>SILTY SAND</u> , mostly fine to medium san non-plastic, strong brown							
	SM		×	3 4A	·	MOIST	5'-7': <u>SILTY SAND WITH GRAVEL</u> , some fine to coarse sand, little fine angular gravel, few weather weak granodiorite cobbles, non-plastic, brown						11.1	G
8 -	GM					MOIST	7'-12': <u>SILTY GRAVEL WITH SAND</u> , some fine coarse angular gravel, few cobbles and boulders u 18" nominal diameter, non-plastic, brown							
12 -	ROCK						12'-18': WEATHERED GRANODIORITE, crush friable, deeply weathered, grey brown Note: Excavates similar to a silty sand with weak gravel (SM)	ed,						
16 -	-													
20 -	-						TERMINATED AT 18 FEET, NO FREE WATEI ENCOUNTERED	2						
24 -	-													

B - Bulk Sample HOUR DATE

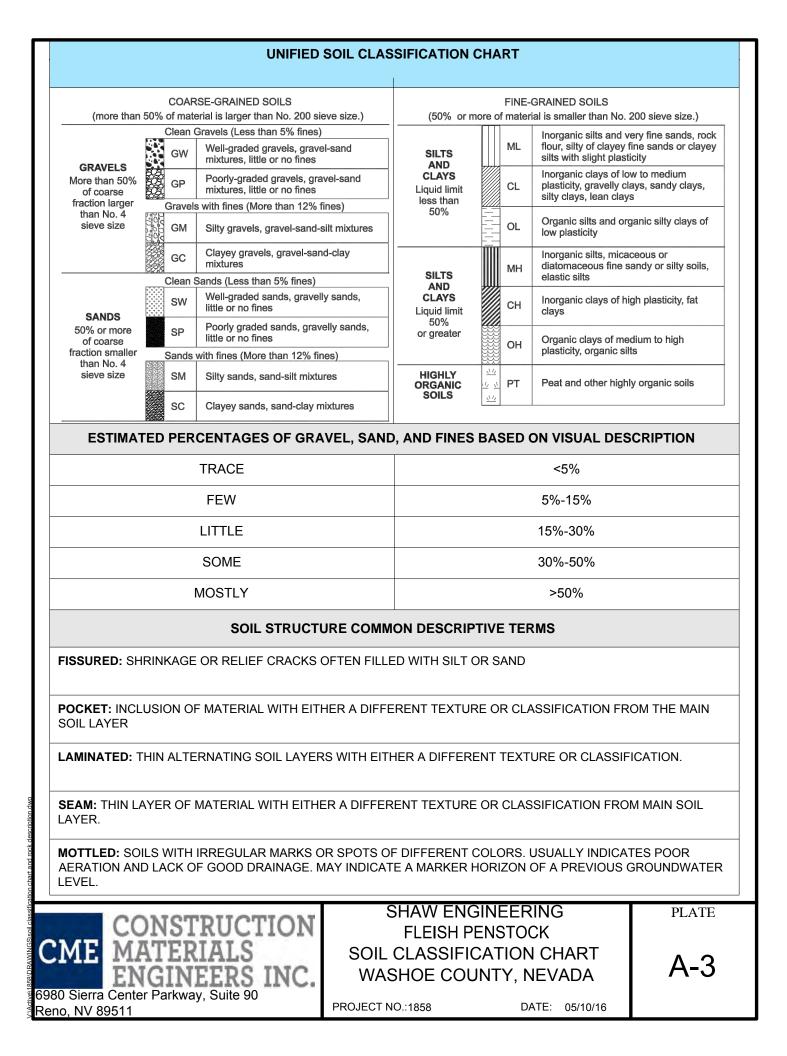
DEPTH

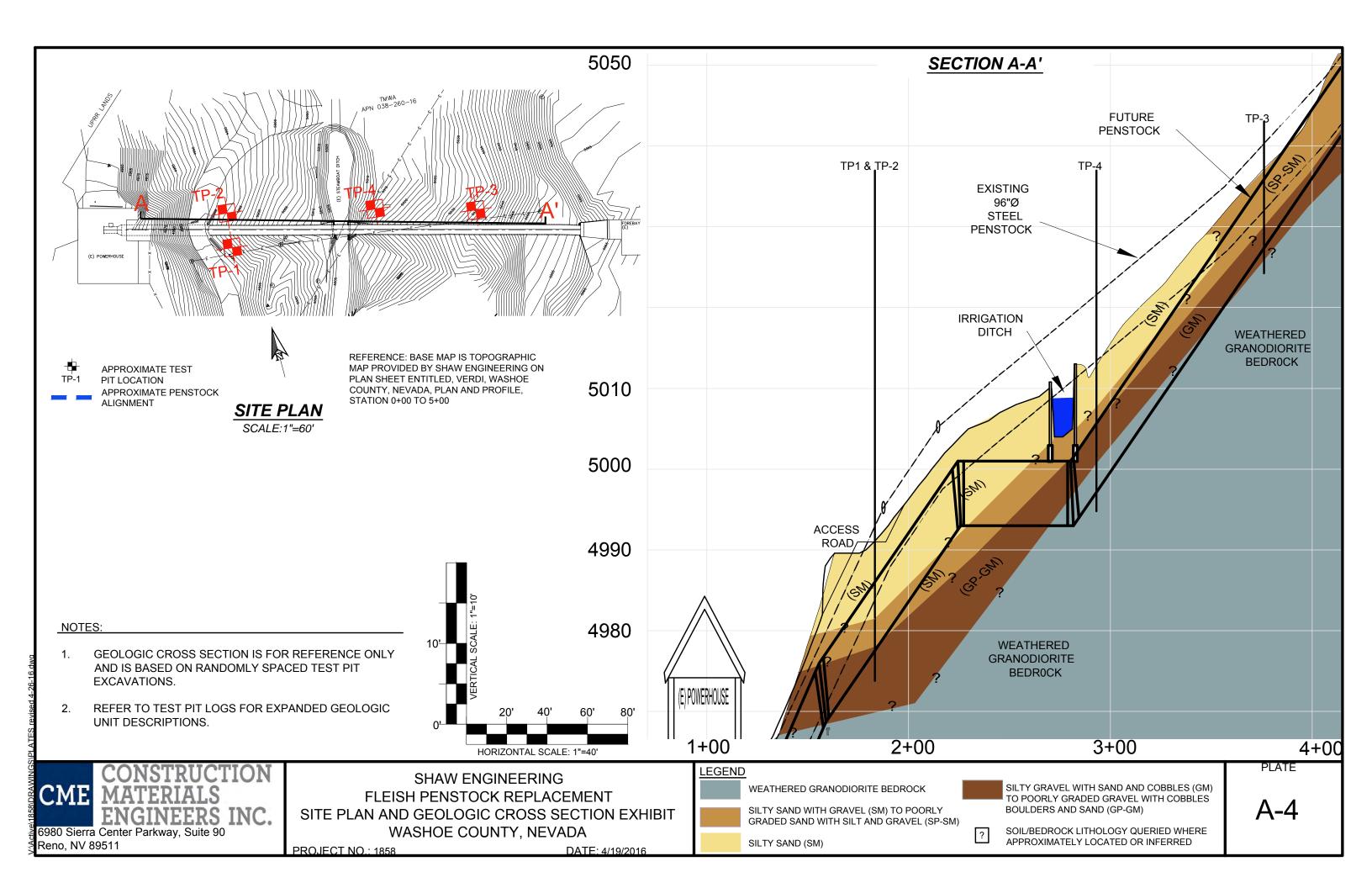
N.E.

Ā

Ţ

LABORATORY TESTS SG - Bulk Specific Gravity


- G Grain Size
- A Atterberg Limits


C - Consolidation

MD - Moisture/Density

DS - Direct Shear

CONSTRUCTION MATERIALS ENGINEERS, INC. CME

WILDCAT DYNAMIC CONE LOG

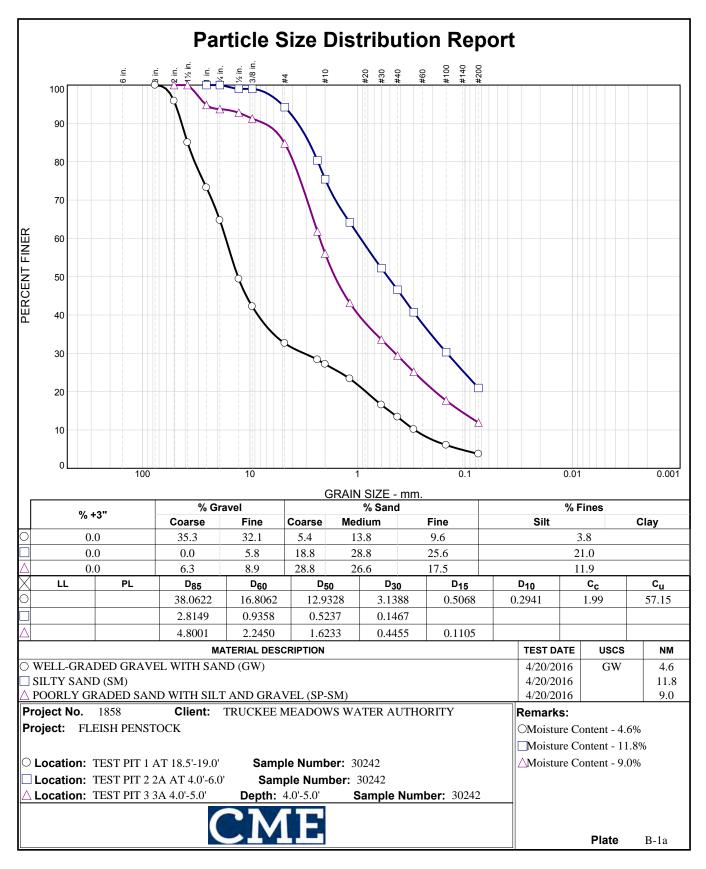
Page 1 of 1

CME, Inc.		
6980 Sierra Center Parkway, Suite 90	PROJECT NUMBER:	1858
Reno, Nevada 89511	DATE STARTED:	04-21-2016
	DATE COMPLETED:	04-21-2016
HOLE #: <u>DCP-1</u>	-	
CREW: SAM	SURFACE ELEVATION:	~4,990 (TOPO)
PROJECT: TMWA FLEISH PENSTOCK	WATER ON COMPLETION:	NO
ADDRESS: WASHOE COUNTY	HAMMER WEIGHT:	35 lbs.
LOCATION: FLEISH, NEVADA	CONE AREA:	10 sq. cm

DEPTH PER 10 cm Kg/cm ² 0 50 100 150 N NON-COHESTVE COHESTVE - 13 57.7 16 MEDUM DENSE VERY STIFF - 11 48.8 16 MEDUM DENSE VERY STIFF - 15 66.6 17 MEDUM DENSE VERY STIFF - 16 62.2 17 MEDUM DENSE VERY STIFF - 16 62.6 17 MEDUM DENSE VERY STIFF - 14 48.8 10 LOOSE STIFF - 11 48.8 10 LOOSE MEDUM DENSE STIFF - 8 30.9 10 LOOSE MEDUM STIFF - 6 12.2 6 LOOSE MEDUM STIFF - 5 19.3 6 LOOSE <t< th=""></t<>
13 57.7
1 ft 11 48.8 13 MEDIUM DENSE STIFF 15 66.6 17 MEDIUM DENSE VERY STIFF 2 ft 11 48.8 13 MEDIUM DENSE STIFF 3 ft 12 53.3 13 MEDIUM DENSE STIFF 3 ft 12 53.3 15 MEDIUM DENSE STIFF - 3 ft 12 53.3 10 LOOSE STIFF - 1 m 8 30.9 8 LOOSE MEDIUM STIFF - 4 ft 5 19.3 5 LOOSE MEDIUM STIFF - 5 ft 8 30.9 6 LOOSE MEDIUM STIFF - 5 ft 8 30.9 8 LOOSE MEDIUM STIFF - 6 ft 16 61.8 17 MEDIUM DENSE VERY STIFF - 7 ft 33 112.9 25+ DENSE VERY STIFF - 7 ft 33 112.9 25+ DENSE HARD - 9 ft - 5 17.0 25+ DENSE HARD - 3
14 62.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
- 11 48.8 - 13 MEDIUM DENSE STIFF - 3 ft 12 53.3 - 15 MEDIUM DENSE STIFF - 8 30.9 - 10 LOOSE MEDIUM STIFF - 4 ft 5 19.3 - 5 LOOSE MEDIUM STIFF - 8 30.9 - 8 LOOSE MEDIUM STIFF - 8 30.9 - 8 LOOSE MEDIUM STIFF - 7 ft 33 127.4 25+ MEDINE HARD - 7 ft 33 112.9 - 25+ </th
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
- 4 ft 5 19.3
- 4 ft 5 19.3
- 6 23.2
- 5 19.3
- 5 ft 8 30.9
- 18 69.5 - 19 MEDIUM DENSE VERY STIFF - 6 ft 16 61.8 - 17 MEDIUM DENSE VERY STIFF - 26 100.4 - 25+ MEDIUM DENSE VERY STIFF - 26 100.4 - 25+ MEDIUM DENSE VERY STIFF - 33 127.4 - 25+ DENSE HARD - 7 ft 33 112.9 - 25+ DENSE HARD - 50 171.0 - 25+ DENSE HARD - - - - 25+ DENSE HARD - - - - - - - - - 9 ft - - - - - - - - 3 m 10 ft - - - - - - - 11 ft - - - - - - - - - <t< th=""></t<>
- 8 30.9 8 LOOSE MEDIUM STIFF - 26 100.4 25+ MEDIUM DENSE VERY STIFF - 33 127.4 25+ DENSE HARD - 7 ft 33 112.9 25+ DENSE HARD - 50 171.0 25+ DENSE HARD - 8 ft 25+ DENSE HARD - 9 ft 25+ DENSE HARD - 25+ DENSE HARD -
- 6 ft 16 61.8 26 100.4 - 2 m 33 127.4 - 7 ft 33 112.9 - 50 171.0 - 8 ft - - 9 ft - - 11 ft - - 11 ft - - 11 ft - - 11 ft -
- 2m 33 127.4 - 7 ft 33 112.9 - 7 ft 33 112.9 - 7 ft 50 171.0 - 8 ft - - 9 ft - - 3 m 10 ft - 11 ft -
- 2m 33 127.4 - 7 ft 33 112.9 - 7 ft 33 112.9 - 7 ft 50 171.0 - 8 ft - - 9 ft - - 3 m 10 ft - 11 ft -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
- 50 171.0 - 25+ DENSE HARD
- 8 ft - 9 ft - 3 m 10 ft - 11 ft
9 ft - 3 m 10 ft - 11 ft
9 ft - 3 m 10 ft - 11 ft
- 3 m 10 ft
- 3 m 10 ft
- 3 m 10 ft
- 12 ft
- 12 ft
- 4 m 13 ft
Average and an
C:/My/Documents/WildcattWC_XL97 XLS
SHAW ENGINEERING PLATE
CONSTRUCTION FLEISH PENSTOCK
ME MATERIALS LOG OF DCP-1
ENGINEERS INC. WASHOE COUNTY, NEVADA A-5a
0 Sierra Center Parkway, Suite 90 o, NV 89511 PROJECT NO.:1858 DATE: 05/10/16

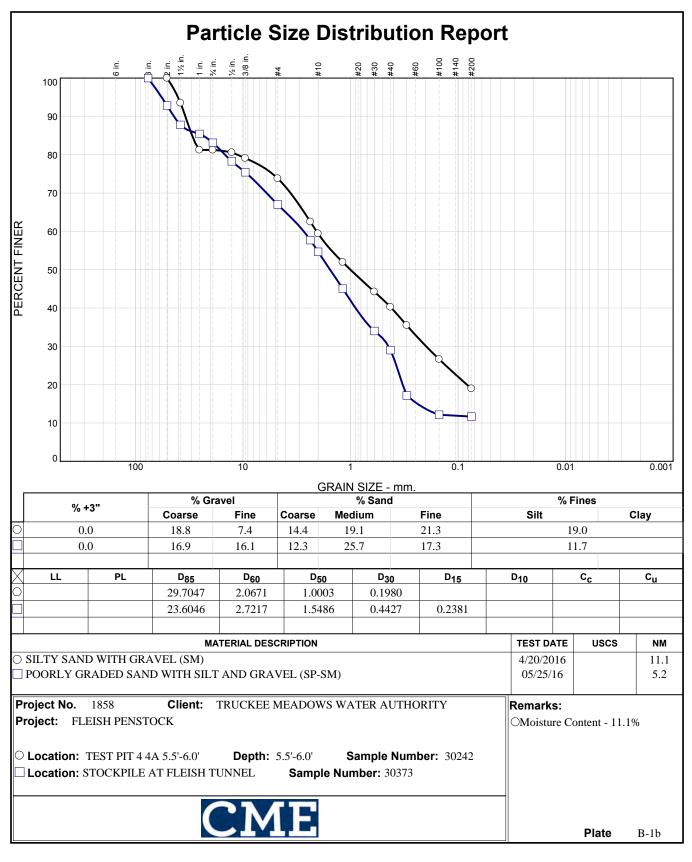
WILDCAT DYNAMIC CONE LOG

CME, Inc.

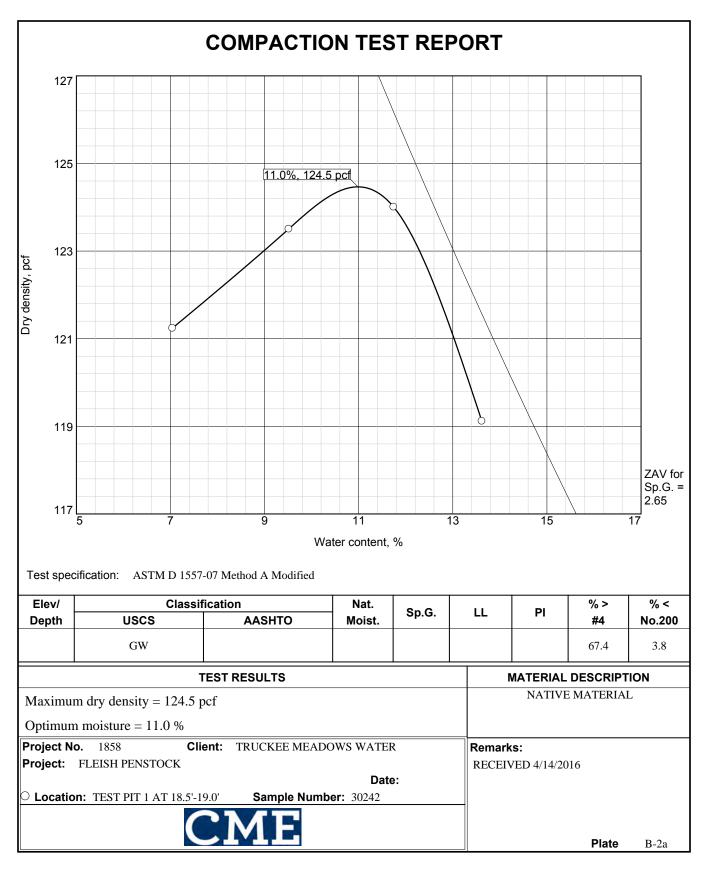

Page 1 of 1

6980 Sierra Ce	nter Parkway, Suite 90	PROJECT NUMBER:	1858
Reno, Nevada	89511	DATE STARTED:	04-21-2016
		DATE COMPLETED:	04-21-2016
HOLE #:	DCP-2	-	
CREW:	SAM	SURFACE ELEVATION:	~5,016 (TOPO)
PROJECT:	TMWA FLEISH PENSTOCK	WATER ON COMPLETION:	NO
ADDRESS:	WASHOE COUNTY	HAMMER WEIGHT:	35 lbs.
LOCATION:	FLEISH, NEVADA	CONE AREA:	10 sq. cm

			BLOWS	RESISTANCE	GRA	APH OF CO	NE RESI	STANCE		TESTED CO	NSISTENCY
	DE	PTH	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
	-		3	13.3	•••				3	VERY LOOSE	SOFT
	-		5	22.2	•••••	•			6	LOOSE	MEDIUM STIFF
	-	1 ft	3	13.3	•••				3	VERY LOOSE	SOFT
	-		4	17.8	•••••				5	LOOSE	MEDIUM STIFF
	-		4	17.8	•••••				5	LOOSE	MEDIUM STIFF
	-	2 ft	5	22.2	•••••	E.			6	LOOSE	MEDIUM STIFF
			9	40.0	•••••				11	MEDIUM DENSE	STIFF
	-		13	57.7	•••••	•••••			16	MEDIUM DENSE	VERY STIFF
	-	3 ft	29	128.8	•••••		•••••	•••••	25+	DENSE	HARD
	- 1 m		14	62.2	•••••	•••••			17	MEDIUM DENSE	VERY STIFF
	-		13	50.2	•••••	•••••			14	MEDIUM DENSE	STIFF
	-	4 ft	15	57.9	•••••				16	MEDIUM DENSE	VERY STIFF
	-		10	38.6	•••••				11	MEDIUM DENSE	STIFF
	-		14	54.0	•••••	•••••			15	MEDIUM DENSE	STIFF
	-	5 ft	15	57.9					16	MEDIUM DENSE	VERY STIFF
	_		40	154.4			•••••		25+	DENSE	HARD
	_		29	111.9				•	25+	DENSE	HARD
	_	6 ft	37	142.8					25+	DENSE	HARD
	E.	011	50	193.0					25+	VERY DENSE	HARD
	- 2 m		50	195.0					451	VERT DEROE	
	- 2 111	7 ft									
	0	710									
		8 ft									
	_	0 II									
	-										
	-	9 ft									
		УП									
	-										
	- 3 m	10 ft									
	- 511	10 ft									
	-										
	-										
	-	11 ft									
	-	1111									
	-										
	Ē	12 ft									
	-	12 II									
	- 1 m	13 ft									
	- 4 m	15 H									
										014 5-1	
										20.2025015802.0003950	uments\Wildcat\WC_XL97.XLS
		00	NIOTID	TIOTIO	NT.		SHAV	V ENG	INE	ERING	PLATE
	CONSTRUCTION FLEISH PENSTOCK										
CI	1E	And And Address	Special Course when, the lot					DG OF			1
CI	CME MATERIALS										A-5b
	ENGINEERS INC. WASH				SHO	E COU	NTY	, NEVADA			
6980	6980 Sierra Center Parkway, Suite 90						_				
				DATE: 05/10/16							
, INCHU,	147 03	511									



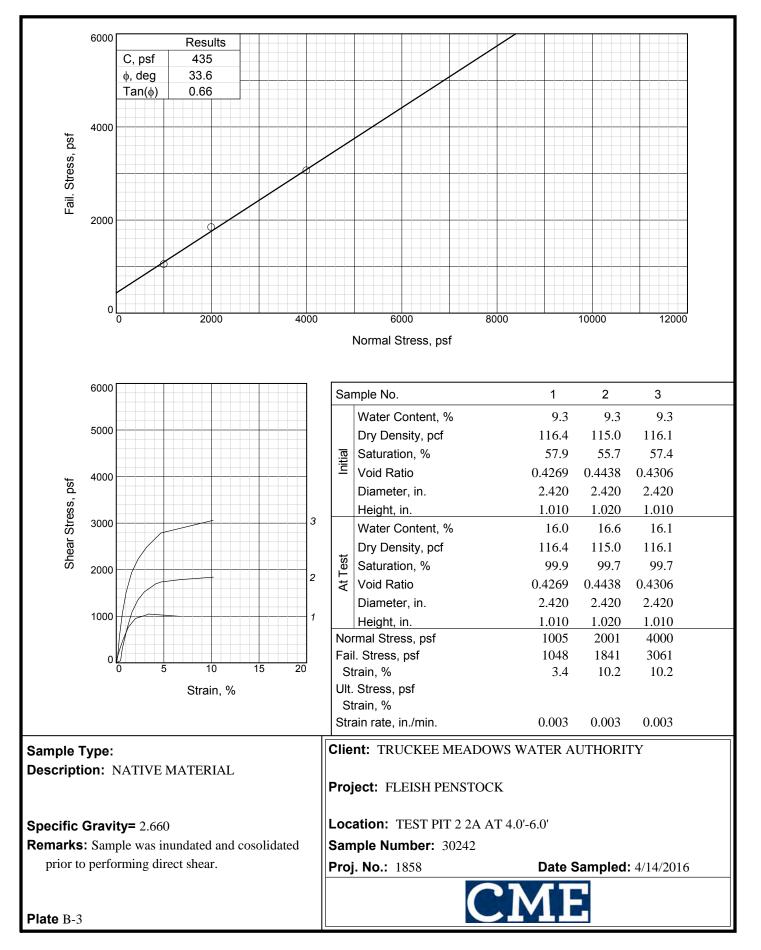
APPENDIX B



Tested By: M. Pontoni

Checked By: S. Hein

Tested By: O M. Pontoni TL Checked By: S. Hein



Tested By: <u>G. MORALES</u>

		COMPACT	ION TES	ST REF	PORT			
132								
1;	30		9.5%, 13	30.0 pcf				
Dry density, pcf	.5							
Dry der 1:	25							
122								ZAV for
1:	20					12		Sp.G. = 2.65
Test spec		4 6 1557-07 Method A Modified	8 Water conten		10	12		14
Elev/ Depth	Cla USCS	ASSIFICATION AASHTO	Nat. Moist.	Sp.G.	LL	PI	% > #4	% < No.200
							5.8	21.0
		TEST RESULTS				MATERIAL		
	m dry density = 130 n moisture = 9.5 %	0.0 pcf				NATIVE	E MATERIA	L
Project No Project:			ADOWS WATE Dat umber: 30242		Remar RECEI	ks: VED 4/14/20	16	
		CME					Plate	B-2b

Tested By: <u>S. SCHWEITZER</u>

Checked By: <u>S. VINEIS</u>

Slerra Environmental Monitoring

ZEnviroTech.

Revised Laboratory Report Report ID: 147681

CME-Construction Materials Engineers, Inc	Date:	4/27/2016
Attn: Stella Montalvo	Client:	CON-160418
69800 Sierra Center Parkway, Suite 90	Taken by:	Client
Reno, Nevada 89511	PO #:	1858

Analysis Report

Laboratory Sample ID	Custo	mer Sample II	D	Date Sam	pled Time Sa	ampled Date Receiv		
\$201604-0816	т	P-1, 1B		4/18/20	4/18/	2016		
Parameter	Method	Result	Units	Reporting Limit	Analyst	Date Analyzed	Data Flag	
Chloride - Ion Chromatography	SW-846 9056A	<10	mg/Kg	10	Faulstich	4/20/2016		
pH - Saturated Paste	SW-846 9045D	7.86	pH Units		Bergstrom	4/20/2016		
pH - Temperature	SW-846 9045D	22.5	°C		Bergstrom	4/20/2016		
Redox Potential	SM 2580 B	522	MV		Bergstrom	4/20/2016		
Resistivity ASTM	ASTM G57	10250	olun em		Bergstrom	4/22/2016		
Sulfate ASTM 1580C	ASTM 1580C	< 0.02	%	0.02	Bergstrom	4/20/2016		

Laboratory Accreditation Number: NV-00015

Laboratory Sample ID	Custo	mer Sample II	D	Date Sam	pled – Time Sa	mpled Dat	e Received
S201604-0817	Т	P-2, 2A		4/18/20	4	/18/2016	
Parameter	Method	Result	Units	Reporting Limit	Analyst	Date Analyze	Data d Flag
Chloride - Ion Chromatography	SW-846 9056A	<10		10	Faulstich	4/21/2010	5
pH - Saturated Paste	SW-846 9045D	6.94	pH Units		Bergstrom	4/20/2010	5
pH - Temperature	SW-846 9045D	22.7	°C		Bergstrom	4/20/2010	5
Redox Potential	SM 2580 B	541	MV		Bergstrom	4/20/2010	5
Resistivity ASTM	ASTM G57	6780	ohm cm		Bergstrom	4/22/2010	5
Sulfate ASTM 1580C	ASTM 1580C	< 0.02	%	0.02	Bergstrom	4/20/2010	5

Laboratory Accreditation Number: NV-00015

Laboratory Sample ID	Customer Sample ID			Date Sam	pled Time Sa	mpled Date R	eceived
S201604-0818	TP-3, 3A			4/18/2016		4/18/2016	
Parameter	Method	Result	Units	Reporting Limit	Analyst	Date Analyzed	Data Flag
Chloride - Ion Chromatography	SW-846 9056A	<10	mg/K.g	10	Faulstich	4/21/2016	
pH - Saturated Paste	SW-846 9045D	7.07	pH Units		Bergstrom	4/20/2016	
pH - Temperature	SW-846 9045D	23.0	°C		Bergstrom	4/20/2016	
Redox Potential	SM 2580 B	563	MV		Bergstrom	4/20/2016	
Resistivity ASTM	ASTM G57	6470	oàm cm		Bergstrom	4/22/2016	
Sulfate ASTM 1580C	ASTM 1580C	<0.02	%	0.02	Bergstrom	4/20/2016	

Carly Wood Laboratory Director Page 2 of 4 1135 Financial Blvd. Reno, NV 89502-2348 Phone (775) 857-2400 Fax (888) 398-7002 jnava@sem-analytical.com

John Faulstich Quality Assurance Manager

SHAW ENGINEERING FLEISH PENSTOCK CORROSION TEST RESULTS WASHOE COUNTY, NEVADA

PLATE

B-4a

PROJECT NO.:1858

DATE: 05/10/16

Slerra Environmental Monitoring

ZCEnviroTech.

Revised Laboratory Report

Report ID: 147681

CME-Construction Materials Engineers, Inc	Date:	4/27/2016
Attn: Stella Montalvo	Client:	CON-160418
69800 Sierra Center Parkway, Suite 90	Taken by:	Client
Reno, Nevada 89511	PO #:	1858

Analysis Report

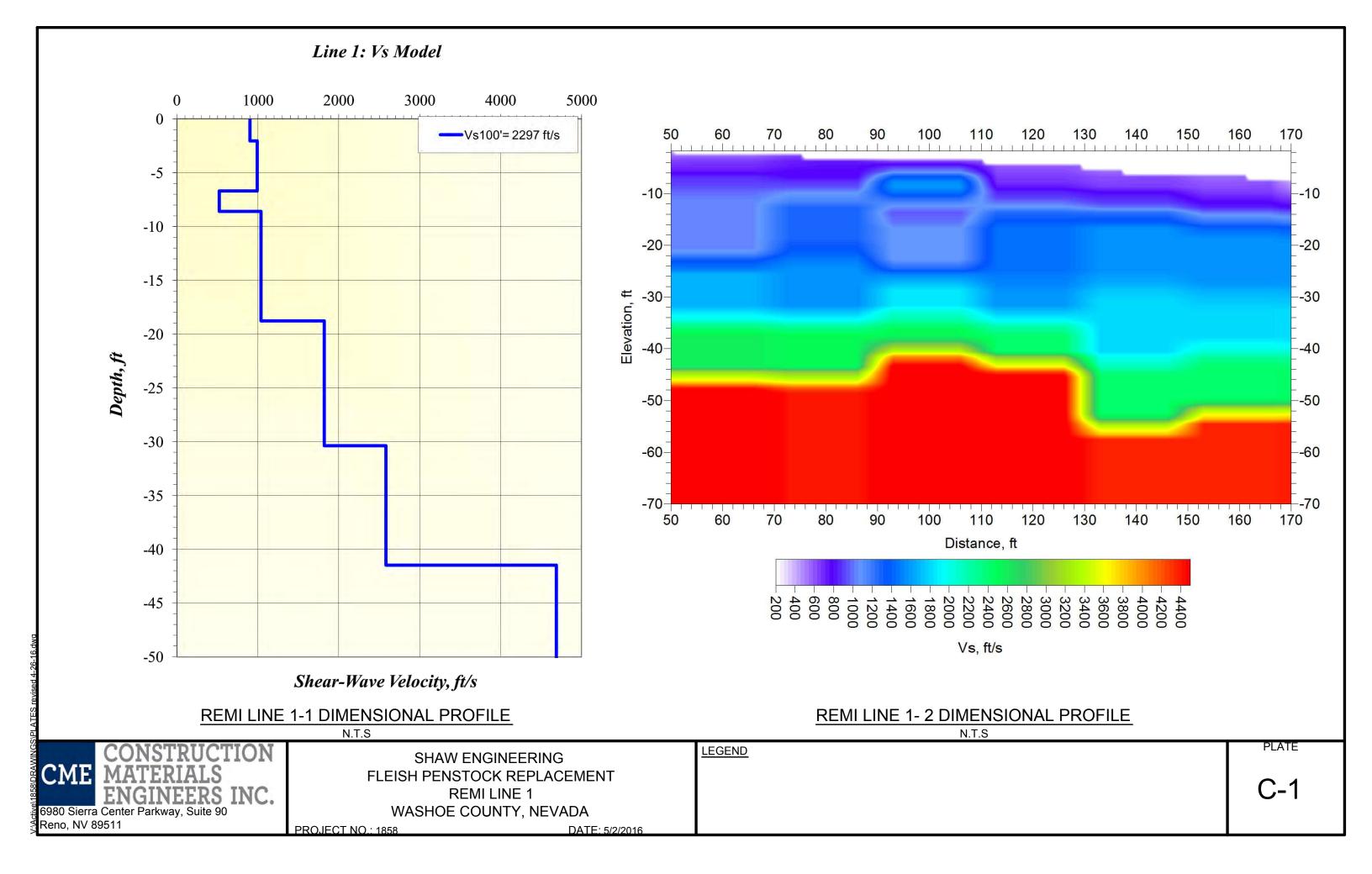
Laboratory Sample ID	Customer Sample ID TP-4, 4A			Date Sam	pled – Time Sa	mpled – Date R	eceived
S201604-0819				4/18/2016		4/18/2016	
Parameter	Method	Result	Units	Reporting Limit	Analyst	Date Analyzed	Data Flag
Chloride - Ion Chromatography	SW-846 9056A	<10	mg/Kg	10	Faulstich	4/21/2016	
oH - Saturated Paste	SW-846 9045D	7.27	pH Units		Bergstrom	4/20/2016	
H - Temperature	SW-846 9045D	22.8	°C		Bergstrom	4/20/2016	
Redox Potential	SM 2580 B	555	MV		Bergstrom	4/20/2016	
Resistivity ASTM	ASTM G57	6150	ohm cin		Bergstrom	4/22/2016	
Sulfate ASTM 1580C	ASTM 1580C	< 0.02	%	0.02	Bergstrom	4/20/2016	

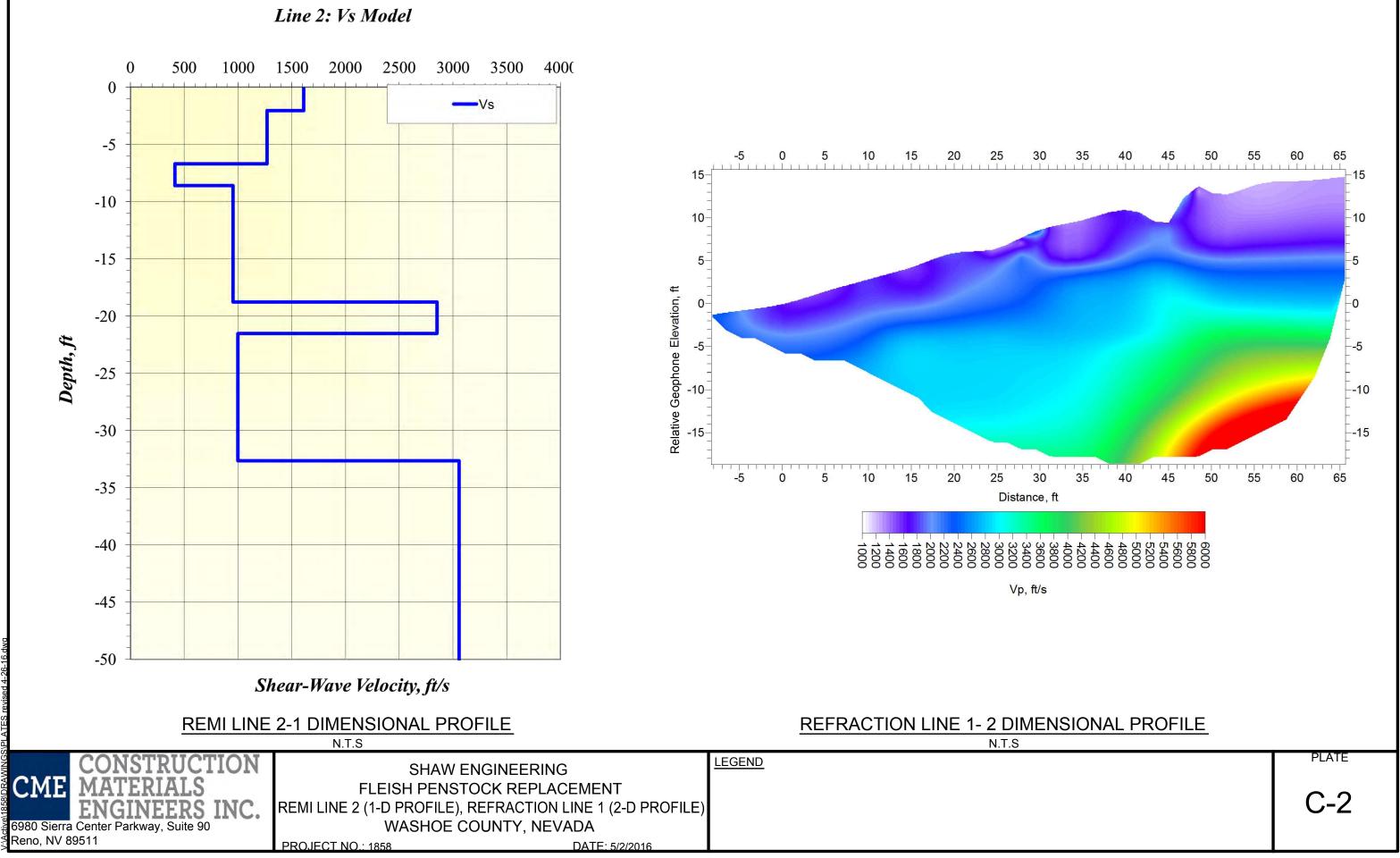
Data Flag Legend:

SHAW ENGINEERING FLEISH PENSTOCK CORROSION TEST RESULTS WASHOE COUNTY, NEVADA

PLATE

B-4k)
------	---


PROJECT NO.:1858


Page 3 of 4

DATE: 05/10/16

APPENDIX C

APPENDIX D

USGS Design Maps Summary Report

User-Specified Input

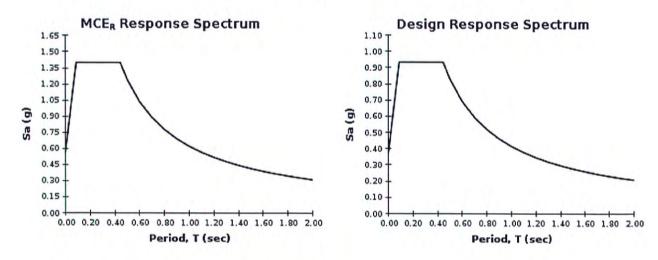
Report Title Fleish penstock replacement Wed April 6, 2016 21:32:00 UTC

Building Code Reference Document ASCE 7-10 Standard

(which utilizes USGS hazard data available in 2008)

Site Coordinates 39.481°N, 119.9923°W

Site Soil Classification Site Class C - "Very Dense Soil and Soft Rock"


Risk Category I/II/III

USGS-Provided Output

$S_s =$	1.401 g	S _{MS} =	1.401 g	S _{DS} =	0.934 g
S1 =	0.467 g	S _{M1} =	0.623 g	S _{D1} =	0.415 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For PGAM, TL, CRS, and CR1 values, please view the detailed report.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

EUSGS Design Maps Detailed Report

ASCE 7-10 Standard (39.481°N, 119.9923°W)

Site Class C – "Very Dense Soil and Soft Rock", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_i). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1</u> ⁽¹⁾	$S_s = 1.401 \text{ g}$
From <u>Figure 22-2^[2]</u>	S ₁ = 0.467 g

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class C, based on the site soil properties in accordance with Chapter 20.

Tab	le 20.3–1 Site Classification		
Site Class	$\overline{\nu}_{\mathrm{s}}$	\overline{N} or \overline{N}_{ch}	- Su
A. Hard Rock	>5,000 ft/s	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	<600 ft/s	<15	<1,000 psf
	Any profile with more than Plasticity index PI > Moisture content w Undrained shear str 	> 20, ≥ 40%, and	
E. Colle requiring other second		C	11.00

F. Soils requiring site response

See Section 20.3.1

analysis in accordance with Section

21.1

For SI: $1ft/s = 0.3048 \text{ m/s} 1lb/ft^2 = 0.0479 \text{ kN/m}^2$

Section 11.4.3 — Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectral Response Acceleration Parameters

Site Class	Mapped MCE	R Spectral Resp	onse Acceleratio	on Parameter at	: Short Period
	S _s ≤ 0.25	$S_{s} = 0.50$	S _s = 0.75	$S_{s} = 1.00$	S _s ≥ 1.25
A	0.8	0.8	0.8	0.8	0.8
в	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
Е	2.5	1.7	1.2	0.9	0.9
F		See Se	ction 11.4.7 of	ASCE 7	
N		e Class = C and	ation for interm S₅ = 1.401 g, F, Site Coefficient F,	, = 1.000	Ss
	For Sit	e Class = C and Table 11.4-2:	S _s = 1.401 g, F,	. = 1.000	
	For Sit	e Class = C and Table 11.4-2:	S₅ = 1.401 g, F , Site Coefficient F,	. = 1.000	at 1-s Period
	For Sit	e Class = C and Table 11.4-2: : E R Spectral Res	$S_s = 1.401 g, F_s$ Site Coefficient F _v ponse Accelerat	. = 1.000 ion Parameter a	at 1-s Period
Site Class	For Site Mapped MCI $S_1 \le 0.10$	e Class = C and Table 11.4-2: Ξ_{R} Spectral Res S ₁ = 0.20	$S_s = 1.401 \text{ g}, F_s$ Site Coefficient F, ponse Accelerat $S_1 = 0.30$	s = 1.000 tion Parameter a $S_1 = 0.40$	at 1-s Period S ₁ ≥ 0.50
Site Class	For Site Mapped MCI $S_1 \le 0.10$ 0.8	e Class = C and Table 11.4-2: Ξ_{R} Spectral Res $S_{1} = 0.20$ 0.8	$S_s = 1.401 \text{ g}, F_s$ Site Coefficient F, ponse Accelerat $S_1 = 0.30$ 0.8	s = 1.000 tion Parameter a $S_1 = 0.40$ 0.8	at 1-s Period S₁ ≥ 0.50 0.8
Site Class A B	For Site Mapped MCI $S_1 \le 0.10$ 0.8 1.0	e Class = C and Table 11.4-2: Ξ_{R} Spectral Res $S_{1} = 0.20$ 0.8 1.0	$S_s = 1.401 \text{ g}, F_s$ Site Coefficient F _v ponse Accelerat $S_1 = 0.30$ 0.8 1.0	$S_1 = 1.000$ tion Parameter a $S_1 = 0.40$ 0.8 1.0	at 1-s Period S₁ ≥ 0.50 0.8 1.0
Site Class A B C	For Sit Mapped MC4 S ₁ ≤ 0.10 0.8 1.0 1.7	e Class = C and Table 11.4-2: S_{R} Spectral Res $S_{1} = 0.20$ 0.8 1.0 1.6	$S_s = 1.401 \text{ g}, F_a$ Site Coefficient F, ponse Accelerat $S_1 = 0.30$ 0.8 1.0 1.5	tion Parameter a $S_1 = 0.40$ 0.8 1.0 1.4	at 1-s Period S₁ ≥ 0.50 0.8 1.0 1.3

Table 11.4-1: Site Coefficient F.

e. Ose straight-line interpolation for intermediate values of

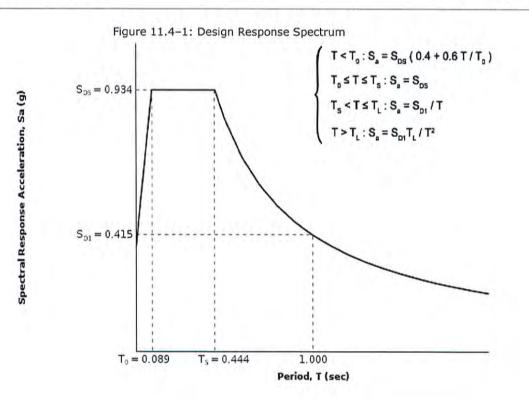
For Site Class = C and $S_1 = 0.467$ g, $F_v = 1.333$

Equation (11.4–1):	$S_{MS} = F_a S_S = 1.000 \times 1.401 = 1.401 g$
--------------------	---

Equation (11.4–2): $S_{M1} = F_v S_1 = 1.333 \times 0.467 = 0.623 \text{ g}$

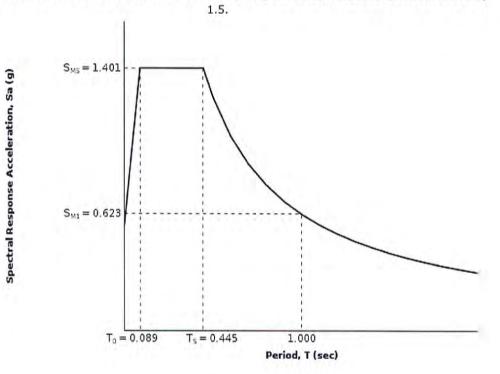
Section 11.4.4 — Design Spectral Acceleration Parameters

Equation (11.4–3):	$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 1.401 = 0.934 \text{ g}$


Equation (11.4-4):

 $S_{\text{D1}} = \frac{2}{3} S_{\text{M1}} = \frac{2}{3} \times 0.623 = 0.415 \text{ g}$

Section 11.4.5 — Design Response Spectrum


From Figure 22-12^[3]

 $T_L = 6$ seconds

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE_R) Response Spectrum

The MCE_R Response Spectrum is determined by multiplying the design response spectrum above by

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From Figure 22-7^[4]

PGA = 0.500

Equation (11.8-1):

 $PGA_{M} = F_{PGA}PGA = 1.000 \times 0.500 = 0.5 g$

Site	Mappeo	MCE Geometri	c Mean Peak Gr	Ground Acceleration, PGA		
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50	
A	0.8	0.8	0.8	0.8	0.8	
в	1.0	1.0	1.0	1.0	1.0	
С	1.2	1.2	1.1	1.0	1.0	
D	1.6	1.4	1.2	1.1	1.0	
E	2.5	1.7	1.2	0.9	0.9	
F		See Se	ction 11.4.7 of	ASCE 7		

Table 11.8-1: Site Coefficient FPGA

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = C and PGA = 0.500 g, F_{PGA} = 1.000

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From <u>Figure 22-17</u> ^[5]	$C_{RS} = 0.986$
From <u>Figure 22-18</u> ^[6]	$C_{R1} = 0.971$

Section 11.6 — Seismic Design Category

VALUE OF S _{DS}	RISK CATEGORY		
	I or II	III	IV
S _{bs} < 0.167g	А	A	A
$0.167g \le S_{\rm ps} < 0.33g$	В	В	С
$0.33g \le S_{\rm DS} < 0.50g$	С	С	D
0.50g ≤ S _{ps}	D	D	D

- A set and the set of the set		
Table 11.6-1 Seismic Design Category	Based on Short Period	Response Acceleration Parameter
Tuble 11.0 1 Delattic Design Cutegory	based on phone renou	Response Acceleration Parameter

For Risk Category = I and S_{DS} = 0.934 g, Seismic Design Category = D

Table 11.6-2 Seismic Design	Category Based on	1-S Period Response	Acceleration Parameter
-----------------------------	-------------------	---------------------	------------------------

VALUE OF SDI	RISK CATEGORY		
	I or II	111	IV
S _{D1} < 0.067g	А	А	А
$0.067g \le S_{D1} < 0.133g$	В	В	С
$0.133g \le S_{D1} < 0.20g$	С	С	D
0.20g ≤ S ₀₁	D	D	D

For Risk Category = I and S_{D1} = 0.415 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = D

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 22-1:

http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf

2. Figure 22-2:

http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf

- Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- 4. Figure 22-7:

http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf

- Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
- Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

APPENDIX E

ReSSA -- Reinforced Slope Stability Analysis Present Date/Time: Fri May 06 08:29 45 2016 TMWA Penstock Replacement V:\Active\1858\slope stability\Static penstock profile access road moved 15 feet east.MSE

and 3 Dife55 A Venue 3 Dife55 A Venue 10 Re55 A Ven

TMWA Penstock Replacement

Ratta Venues 10 Ratta

Report created by ReSSA(3.0): Copyright (c) 2001-2011, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title:TMWA Penstock ReplacementProject Number:1858 -Client:Shaw EngineeringDesigner:Randy Reynolds

Description:

Static analysis with surcharge load

Company's information:

Name: Street: CME

Telephone #: Fax #: E-Mail:

Original file path and name: V:\Active\ enstock profile access road moved 15 feet east.MSE Original date and time of creating this file: Fri May 06 08:13:38 2016

PROGRAM MODE: Analysis of a General Slope using NO reinforcement material.

are 10 Rollin Version 10 Rollin Version 10 Rollin Version 10 Rol

and 10 Rolling Verson & C.R. Star Ver-

INPUT DATA (EXCLUDING REINFORCEMENT LAYOUT)

SOIL DATA

		Internal angle of	
	Unit weight, y	friction, ϕ	Cohesion, c
======================================	[lb/ft ³]	[deg.]	[lb/ft ²]
1Uppermost alluvium layer	125.0	34.0	400.0
2Glacial Outwash deposit	135.0	38.0	100.0
3granitic bedrock	145.0	42.0	10000.0

na 30 BeSSA Venue 30 BeSSA V

REINFORCEMENT

Analysis of slope WITHOUT reinforcement.

WATER

Water is not present

SEISMICITY

Not Applicable

D ROSA VINNES J DRASA VINNES J DRASA VINNES I DRASA VINNES I DRASA VINNES I DRASA VINNES I DRASA VINNES J DRASA VINNES I DRASA VINNES VINNES VINNES VINNES VINNES VINNES VINNES VINNES VINNES

a 5 0 RoSSA Varmen h

errison 3.0 Re35A Verrison 3.0 Re55A Verrison 3.0 Re55A Ver

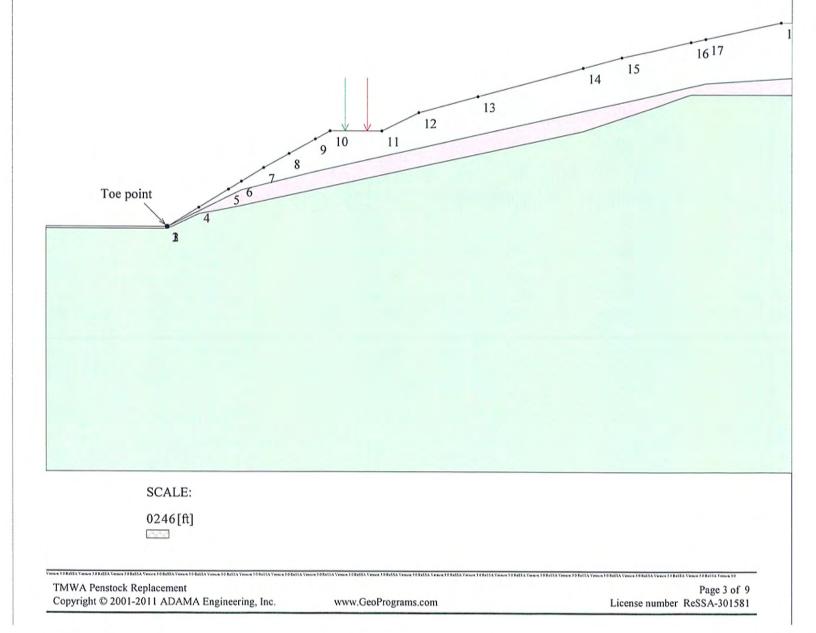
DRAWING OF SPECIFIED GEOMETRY - GENERAL - Quick Input

-- Problem geometry is defined along sections selected by user at x,y coordinates.

-- X1,Y1 represents the coordinates of soil surface. X2,Y2 represent the coordinates of the end of soil layer 1 and start of soil layer 2, and so on.

non 30 Re33A Version 30 Re33A Version 30 Re33A Version 30 Re

GEOMETRY


Soil profile contains 3 layers (see details in next page)

UNIFORM SURCHARGE

Load Q1 = 7000.00 [lb/ft²] inclined from verical at 0.00 degrees, starts at X1s = 376.00 and ends at X1e = 377.50 [ft]. Load Q2 = 7000.00 [lb/ft²] inclined from verical at 0.00 degrees, starts at X2s = 382.00 and ends at X2e = 383.50 [ft]. Surcharge load, Q3.....None

STRIP LOAD

.....None.....

erence 10 Rolls Version 10 Rolls Ver

TABULATED DETAILS OF QUICK SPECIFIED GEOMETRY

in 2014354 Venues 2014554 Venues 2214554 Venues 22144554 Venues 20144554 Venues 2014554 Venues 2014554 Venues 2014554 Venues 2014554

Soil profile contains 3 layers. Coordinates in [ft.]

	#	Xi	Yi
Top of Laye	r 1 1	328.00	394.00
	2	354.00	410.00
	3	372.00	420.00
	4	386.00	420.00
	5	396.00	425.00
	6	451.00	440.00
	7	474.00	445.00
	8	494.50	449.50
Top of Layer 2	r 2 9	328.00	394.00
	10	348.00	404.00
	11	368.00	409.00
	12	412.00	419.00
	13	474.00	433.00
	14	504.00	435.00
Top of Laye	r 3 15	328.08	393.50
	16	336.50	397.50
	17	344.49	399.00
	18	440.50	420.00
	19	470.00	430.00

on 38 8414 Vience 18 84154 Vience 19 84554 Vience 39 84154 Vience 38 84154 Vience 38 84554 Vience 18 84554 Vience 18 85

......

3 BRed SA Version 3 BRed SA Version 10

TABULATED DETAILS OF SPECIFIED GEOMETRY

Term 3 D Re53 A Version 3 D Re55 A Version 3 D Re55 A Version 3 D Re55 A Version 1 D Re55

Soil profile contains 3 layers. Coordinates in [ft.]

#	х	Y1	Y2	¥3	
1	328.00	394.00	394.00	393.50	
2	328.08	394.05	394.04	393.50	
3	328.08	394.05	394.04	393.50	
4	336.50	399.23	398.25	397.50	
5	344.49	404.15	402.24	399.00	
6	348.00	406.31	404.00	399.77	
7	354.00	410.00	405.50	401.08	
8	360.89	413.83	407.22	402.59	
9	368.00	417.78	409.00	404.14	
10	372.00	420.00	409.91	405.02	
11	386.00	420.00	413.09	408.08	
12	396.00	425.00	415.36	410.27	
13	412.00	429.36	419.00	413.77	
14	440.50	437.14	425.44	420.00	
15	451.00	440.00	427.81	423.56	
16	470.00	444.13	432.10	430.00	
17	474.00	445.00	433.00	430.00	
18	494.50	449.50	434.37	430.00	
19	504.00	449.50	435.00	430.00	

Venice 3.0 Re35A Venice 3.0 Re35A Venice 1.0 Re35A Venice 3.0 Re35A Venice

A Venue JORASSA Venue JARASSA Ve

RESULTS OF ROTATIONAL STABILITY ANALYSIS

Results in the tables below represent critical circles identified between specified points on entry and exit. (Theta-exit set to 50.00 deg.) The most critical circle is obtained from a search considering all the combinations of input entry and exit points.

Entry Point #	Entry (X, [f			Point X,Y) [ft]		ical C Xc,Yc,R [ft]		Fs	STATUS
1	376.10	420.00	334.07	397.91	333.46	450.12	52.21	2.28	
. 2	377.67	420.00	367.90	417.76	371.78	423.24	6.71	1.57 .	OK
3	379.23	420.00	334.00	397.89	329.75	463.90	66.15	1.67	UK
4	380.79	420.00	337.88	400.09	342.03	447.34	47.43	1.76	
5	382.35	420.00	339.44	401.20	343.89	449.42	48.43	1.70	
6	383.92	420.00	335.95	399.01	337.22	461.40	62.40	1.69	
6 7	385.48	420.00	334.09	397.90	330.18	477.80	79.99	1.72	
8	387.04	420.52	334.11	397.90	330.03	480.71	82.90	1.76	
9	388.60	421.30	332.42	396.80	313.64	516.54	121.20	1.82	
10	390.16	422.08	333.93	397.86	318.45	511.18	114.37	1.88	
11	391.73	422.86	334.13	397.90	327.83	491.36	93.67	1.86	
12	393.29	423.64	332.42	396.80	308.51	533.44	138.71	1.91	
13	394.85	424.43	333.98	397.86	317.35	519.01	122.28	1.95	
14	396.41	425.11	335.95	398.99	324.66	508.13	109.73	2.01	
15	397.98	425.54	337.87	400.09	339.30	480.42	80.34	2.10	
16	399.54	425.96	337.86	400.09	339.35	483.00	82.92	2.18	
17	401.10	426.39	332.51	396.81	304.53	556.03	161.66	2.16	
18	402.66	426.82	334.04	397.86	305.60	561.05	165.64	2.25	
19	404.23	427.24	332.54	396.82	302.58	567.08	172.88	2.31	
20	405.79	427.67	334.15	397.89	316.85	540.57	143.72	2.31	
21	407.35	428.10	332.57	396.83	300.59	578.35	184.31	2.41	
22	408.91	428.52	332.59	396.83	299.59	584.05	190.11	2.42	
23	410.48	428.95	331.77	396.69	298.57	589.81	195.96	2.45	
24	412.04	429.37	332.44	396.79	272.71	656.25	266.25	2.45	
25	413.60	429.80	332.58	396.83	289.45	618.84	226.16	2.51	

Note: In the 'Status' column, OK means the critical circle was identified within the specified search domain. 'On extreme X-entry' means that the critical result is on the edge of the search domain; a lower Fs may result if the search domain is expanded.

Version 1 D Hallin Ver

new 1/2 Relative Version 3 D Relation V

RESULTS OF ROTATIONAL STABILITY ANALYSIS

Results in the tables below represent critical circles identified between specified points on entry and exit. (Theta-exit set to 50.00 deg.) The most critical circle is obtained from a search considering all the combinations of input entry and exit points.

a 10 Relia Vennes J.F.Relia Vennes J.F.Relia Vennes J.F.Relia Vennes J.F.Relia Vennes J.F.Relia Vennes J.F.Relia Vennes J.F.Relia

Exit	Exit			considering al		ical C			
Point #	(X, [f			X,Y) [ft]		Xc, Yc, F [ft]		Fs	STATUS
1	326.95	394.01	383.92	420.00	328.56	465.91	71.92	10.34	
2	328.61	394.49	377.67	420.00	257.65	590.88	208.81	2.07	
3	330.53	395.65	383.92	420.00	265.97	607.89	221.84	1.87	
4	332.37	396.79	383.92	420.00	315.91	502.21	106.69	1.69	
5	334.05	397.91	377.67	420.00	332.36	455.34	57.46	1.64	
6	335.95	399.00	377.67	420.00	335.20	452.43	53.43	1.66	
7	337.62	400.09	377.67	420.00	337.90	449.76	49.67	1.70	
8	339.46	401.21	377.67	420.00	344.90	438.39	37.58	1.66	
9	341.39	402.27	377.67	420.00	345.94	438.95	36.95	1.67	
10	342.96	403.38	377.67	420.00	346.46	440.61	37.40	1.68	
11	344.75	404.50	377.67	420.00	352.19	431.40	27.91	1.72	
12	346.52	405.58	383.92	420.00	354.70	440.05	35.43	1.73	
13	348.13	406.69	383.92	420.00	355.37	441.97	36.02	1.79	
14	349.90	407.85	383.92	420.00	360.28	432.49	26.73	1.83	
15	351.75	408.89	383.92	420.00	361.14	433.82	26.64	1.84	
16	353.70	409.88	377.67	420.00	355.79	438.37	28.57	1.89	
17	355.33	410.88	377.67	420.00	357.02	438.66	27.82	1.92	
18	357.19	411.91	377.67	420.00	362.95	427.28	16.42	1.92	
19	359.04	412.85	377.67	420.00	363.65	428.69	16.49	1.86	
20	360.85	413.82	377.67	420.00	365.86	426.17	13.32	1.81	
21	362.57	414.83	377.67	420.00	367.56	424.89	11.23	1.74	
22	364.37	415.79	377.67	420.00	369.11	423.93	9.42	1.69	
23	366.10	416.80	377.67	420.00	370.49	423.42	7.95	1.62	
24	367.90	417.76	377.67	420.00	371.78	423.24	6.71	1.57 .	OK
25	369.68	418.74	377.67	420.00	373.22	422.24	4.98	1.60	

Note: In the 'Status' column, OK means the critical circle was identified within the specified search domain. 'On extreme X-exit' means that the critical result is on the edge of the search domain; a lower Fs may result if the search domain is expanded.

CRITICAL RESULTS OF ROTATIONAL AND TRANSLATIONAL STABILITY ANALYSES Rotational (Circular Arc; Bishop) Stability Analysis Minimum Factor of Safety = 1.57 Critical Circle: Xc = 371.78[ft], Yc = 423.24[ft], R = 6.71[ft]. (Number of slices used = 51)

Translational (2-Part Wedge; Spencer), Direct Sliding, Stability Analysis

NOT CONDUCTED

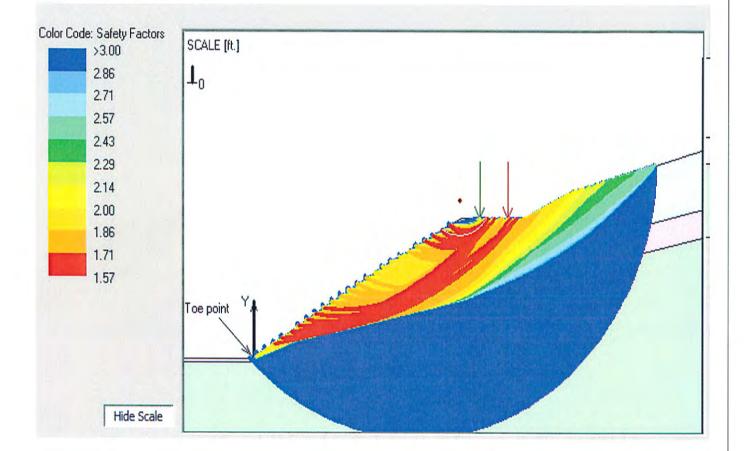
Three-Part Wedge Stability Analysis

N O T C O N D U C T E D REINFORCEMENT LAYOUT: DRAWING

SCALE:

0246[ft]

TMWA Penstock Replacement Copyright © 2001-2011 ADAMA Engineering, Inc.


Version 3.0 Re55A Version 3.0 Re55A Version 3.0 Re55A Ver

www.GeoPrograms.com

Page 8 of 9 License number ReSSA-301581

a 3 0 ReSSA Venues 3 0 ReSSA Venues 30 ReSSA Venues 30 ReSSA Venues 5

SAFETY MAP: BISHOP ROTATIONAL ANALYSIS MODE

Version 3.0 RedSA Version 3.0 RedSA

ReSSA -- Reinforced Slope Stability Analysis Present Date/Time: Fri May 06 08:31:57 2016 TMWA Penstock Replacement V:\Active\1858\slope stability\Static penstock profile access road moved 15 feet east.MSE

TMWA Penstock Replacement

now 10 R435A Vinisio 30 R435A Vinisio 30 R431A Vinisio 30 R435A Vinisio 30

Report created by ReSSA(3.0): Copyright (c) 2001-2011, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title:TMWA Penstock ReplacementProject Number:1858 -Client:Shaw EngineeringDesigner:Randy Reynolds

Description:

Seismic analysis with surcharge load

Company's information:

Name: Street: CME

Telephone #: Fax #: E-Mail:

Original file path and name: V:\Active\ enstock profile access road moved 15 feet east.MSE Original date and time of creating this file: Fri May 06 08:13:38 2016

PROGRAM MODE: Analysis of a General Slope using NO reinforcement material.

a 10 Holla Version 10 Rolla Ver

INPUT DATA (EXCLUDING REINFORCEMENT LAYOUT)

SOIL DATA

en 30 He534 1

Join Dirin		Internal angle of	
	Unit weight, y	friction, ϕ	Cohesion, c
Soil Layer #:	[lb/ft ³]	[deg.]	[lb/ft ²]
1Uppermost alluvium layer	125.0	34.0	400.0
2Glacial Outwash deposit	135.0	38.0	100.0
3granitic bedrock	145.0	42.0	10000.0

nue 18 kdSA Venue 10 kdSA

REINFORCEMENT

Analysis of slope WITHOUT reinforcement.

WATER

Water is not present

SEISMICITY

Horizontal peak ground acceleration coefficient, Ao = 0.500Design horizontal seismic coefficient, $kh = Am = 0.50 \times Ao = 0.250$ & design vertical seismic coefficient, kv (down) = 0.000 x kh = 0.000

Vinces 10 RelSA Vinces 10 RelSA

10 3 3 8 still a Version 1 3 Rolla Version 1 0 Rolla Version 10 Rolla Ver

Letta Version 3.0 Retta Version 3.0 Retta

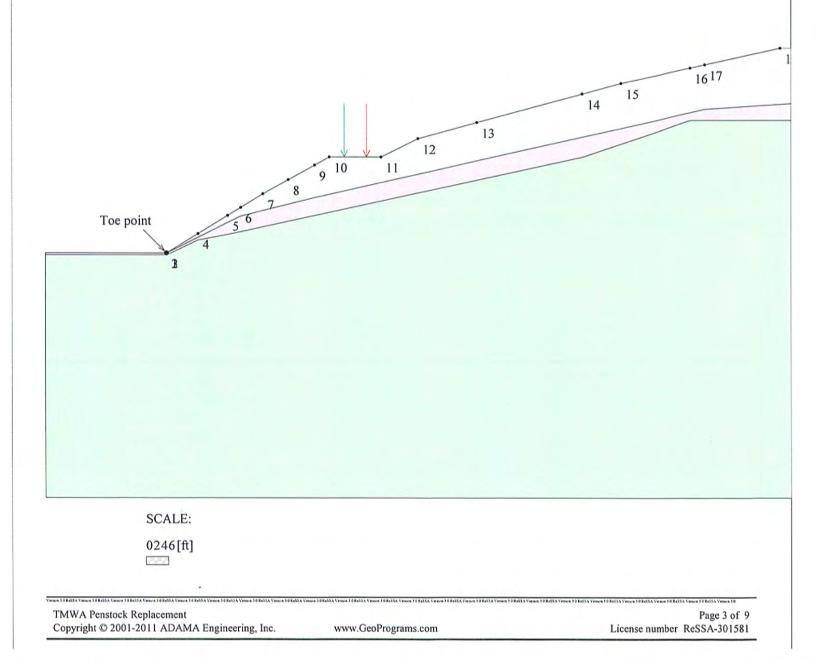
DRAWING OF SPECIFIED GEOMETRY - GENERAL - Quick Input

n 3 0 Re33A Venuen 3 0 Re33A Venuen 3 0 Re53A Venuen 3 0 Re53A

-- Problem geometry is defined along sections selected by user at x,y coordinates.

-- X1,Y1 represents the coordinates of soil surface. X2,Y2 represent the coordinates of the end of soil layer 1 and start of soil layer 2, and so on.

GEOMETRY


Soil profile contains 3 layers (see details in next page)

UNIFORM SURCHARGE

Load Q1 = 7000.00 [lb/ft²] inclined from verical at 0.00 degrees, starts at X1s = 376.00 and ends at X1e = 377.50 [ft]. Load Q2 = 7000.00 [lb/ft²] inclined from verical at 0.00 degrees, starts at X2s = 382.00 and ends at X2e = 383.50 [ft]. Surcharge load, Q3.....None

STRIP LOAD

.....None.....

AXA Version 10 Balla Version 10 Rollan Ver

- Andrews & Marries &

TABULATED DETAILS OF QUICK SPECIFIED GEOMETRY

Venner 12 RASSA Venner J. RASSA Venner 10 RASSA Venner 10 RASSA Venner 12 RASSA Venner 3 DRASSA Venner 12 RASSA Venner 16 RASSA Venner 16 RASSA Venner 10 RASSA

Soil profile contains 3 layers. Coordinates in [ft.]

	#	Xi	Yi	
Top of Layer 1	1	328.00	394.00	
	2	354.00	410.00	
	3	372.00	420.00	
	4	386.00	420.00	
	4 5	396.00	425.00	
	6	451.00	440.00	
	7	474.00	445.00	
	8	494.50	449.50	
Top of Layer 2	9	328.00	394.00	
	10	348.00	404.00	
	11	368.00	409.00	
	12	412.00	419.00	
	13	474.00	433.00	
	14	504.00	435.00	
Top of Layer 3	15	328.08	393.50	
	16	336.50	397.50	
	17	344.49	399.00	
	18	440.50	420.00	
	19	470.00	430.00	

Venues J BASSA Venues 10 RASSA Venues 10 BASSA Venues 10 BASSA

and 10 Rolls A Version 3 0 Rolls A Version 3.0 Rolls A

A DEBASSAN

um 19 BASTA Venues 19 BASTA Venues 19 BASTA Venues 19 BASTA Venues 10 BASTA Venues 10 BASTA Venues 10 BASTA Venues 10 BASTA Venues 20 BASTA Venues 20 BASTA Venues 20 BASTA Venues 10 BASTA Venues 20 BASTA Venues

TABULATED DETAILS OF SPECIFIED GEOMETRY

Soil profile contains 3 layers. Coordinates in [ft.]

#	Х	Y1	Y2	Y3	
1	328.00	394.00	394.00	393.50	
2	328.08	394.05	394.04	393.50	
3	328.08	394.05	394.04	393.50	
4	336.50	399.23	398.25	397.50	
5	344.49	404.15	402.24	399.00	
6	348.00	406.31	404.00	399.77	
7	354.00	410.00	405.50	401.08	
8	360.89	413.83	407.22	402.59	
9	368.00	417.78	409.00	404.14	
10	372.00	420.00	409.91	405.02	
11	386.00	420.00	413.09	408.08	
12	396.00	425.00	415.36	410.27	
13	412.00	429.36	419.00	413.77	
14	440.50	437.14	425.44	420.00	
15	451.00	440.00	427.81	423.56	
16	470.00	444.13	432.10	430.00	
17	474.00	445.00	433.00	430.00	
18	494.50	449.50	434.37	430.00	
19	504.00	449.50	435.00	430.00	

14 Verson 10 Bablis Versis 30 Babba Verson 30 B

RESULTS OF ROTATIONAL STABILITY ANALYSIS

a 9 0 Relsa Venue J 0 Re

Results in the tables below represent critical circles identified between specified points on entry and exit. (Theta-exit set to 50.00 deg.) The most critical circle is obtained from a search considering all the combinations of input entry and exit points.

Entry Point #	(X,			t Point X,Y)		ical C Xc,Yc,F		Fs	STATUS
	[f	tj		[ft]		[ft]			
1	376.10	420.00	334.07	397.91	333.46	450.12	52.21	1.45	
. 2	377.67	420.00	334.09	397.91	333.40	453.31	55.40	1.19 .	OK
3	379.23	420.00	334.00	397.89	329.75	463.90	66.15	1.22	
4	380.79	420.00	337.88	400.09	342.03	447.34	47.43	1.26	
5	382.35	420.00	335.95	399.01	338.12	456.00	57.03	1.25	
6	383.92	420.00	335.95	399.01	337.22	461.40	62.40	1.23	
7	385.48	420.00	334.09	397.90	330.18	477.80	79.99	1.25	
8 9	387.04	420.52	334.11	397.90	330.03	480.71	82.90	1.28	
	388.60	421.30	335.95	399.01	336.13	471.89	72.89	1.31	
10	390.16	422.08	334.11	397.90	327.99	489.15	91.46	1.36	
11	391.73	422.86	334.13	397.90	327.83	491.36	93.67	1.34	
12	393.29	423.64	334.15	397.90	327.68	493.58	95.89	1.38	
13	394.85	424.43	334.13	397.90	325.37	500.70	103.17	1.41	
14	396.41	425.11	334.18	397.91	327.35	498.32	100.64	1.43	
15	397.98	425.54	334.20	397.91	327.11	501.68	104.02	1.48	
16	399.54	425.96	332.54	396.82	309.83	540.62	145.58	1.50	
17	401.10	426.39	332.55	396.82	309.04	545.57	150.60	1.50	
18	402.66	426.82	334.21	397.90	323.87	517.87	120.41	1.52	
19	404.23	427.24	334.23	397.91	323.55	521.56	124.11	1.54	
20	405.79	427.67	334.24	397.91	323.23	525.27	127.84	1.55	
21	407.35	428.10	334.26	397.91	322.90	529.00	131.58	1.56	
22	408.91	428.52	334.23	397.90	319.38	540.52	143.39	1.59	
23	410.48	428.95	334.25	397.91	318.95	544.58	147.47	1.59	
24	412.04	429.37	334.27	397.91	318.52	548.66	151.57	1.57	
25	413.60	429.80	334.28	397.91	318.09	552.76	155.69	1.60	

Note: In the 'Status' column, OK means the critical circle was identified within the specified search domain. 'On extreme X-entry' means that the critical result is on the edge of the search domain; a lower Fs may result if the search domain is expanded.

Venues 10 Batta Venues 10 Batta

O Ralls A Version 10 Rolls A Version 10 Rulls A Ve

a 3 0 Russa Venna 10 Beilla Venna 10 Russa Venna 10 Bella

RESULTS OF ROTATIONAL STABILITY ANALYSIS

nie 10 Rel 14 Venie 10 Rel 14 Venie 10 Rel 15 Venie 10 Rel 15 Rel 14 Venie 10 Rel 14

Results in the tables below represent critical circles identified between specified points on entry and exit. (Theta-exit set to 50.00 deg.) The most critical circle is obtained from a search considering all the combinations of input entry and exit points.

Exit	Exit			y Point		ical C			San Inc.
Point #	(X, [f	(Y) t]	()	X , Y) [ft]	(Xc, Yc, F [ft]	()	Fs	STATUS
1	326.95	394.01	383.92	420.00	328.56	465.91	71.92	7.94	
2	328.61	394.49	377.67	420.00	257.65	590.88	208.81	1.57	
3	330.53	395.65	383.92	420.00	265.97	607.89	221.84	1.44	
4	332.37	396.79	383.92	420.00	315.91	502.21	106.69	1.26	
. 5	334.09	397.91	377.67	420.00	333.40	453.31	55.40	1.19 .	OK
6	335.95	399.01	377.67	420.00	337.82	447.25	48.27	1.21	
7	337.55	400.11	377.67	420.00	339.52	446.52	46.46	1.24	
8	339.46	401.21	377.67	420.00	344.90	438.39	37.58	1.23	
9	341.39	402.27	377.67	420.00	345.94	438.95	36.95	1.24	
10	342.96	403.38	377.67	420.00	347.00	439.49	36.34	1.27	
11	344.75	404.50	377.67	420.00	352.19	431.40	27.91	1.30	
12	346.52	405.58	383.92	420.00	354.70	440.05	35.43	1.34	
13	348.13	406.69	383.92	420.00	355.37	441.97	36.02	1.40	
14	349.90	407.85	383.92	420.00	360.28	432.49	26.73	1.43	
15	351.75	408.90	383.92	420.00	361.38	433.14	26.09	1.47	
16	353.70	409.93	383.92	420.00	364.23	428.70	21.52	1.55	
17	355.40	410.96	383.92	420.00	365.31	429.19	20.75	1.58	
18	357.19	411.91	377.67	420.00	362.95	427.28	16.42	1.60	
19	359.04	412.85	377.67	420.00	363.65	428.69	16.49	1.58	
20	360.85	413.82	377.67	420.00	365.86	426.17	13.32	1.56	
21	362.57	414.83	377.67	420.00	367.56	424.89	11.23	1.54	
22	364.37	415.79	377.67	420.00	369.11	423.93	9.42	1.51	
23	366.10	416.80	377.67	420.00	370.49	423.42	7.95	1.48	
24	367.90	417.76	377.67	420.00	371.78	423.24	6.71	1.47	
25	369.68	418.74	377.67	420.00	373.22	422.24	4.98	1.52	

Note: In the 'Status' column, OK means the critical circle was identified within the specified search domain. 'On extreme X-exit' means that the critical result is on the edge of the search domain; a lower Fs may result if the search domain is expanded.

Venue 10 Rolls Ve

ALLA VIEWS TO BELLA VIEW TO BALLA VIEW TO B

CRITICAL RESULTS OF ROTATIONAL AND TRANSLATIONAL STABILITY ANALYSES Rotational (Circular Arc; Bishop) Stability Analysis Minimum Factor of Safety = 1.19 Critical Circle: Xc = 333.40[ft], Yc = 453.31[ft], R = 55.40[ft]. (Number of slices used = 56)

non 3.0 Re35A Version 3.0 Re55A Version 3.0 Re55A Version 3.0 Re35A Version 3.0 Re15A

Translational (2-Part Wedge; Spencer), Direct Sliding, Stability Analysis

1

non J ORESSA Vennon J ORESSA

NOT CONDUCTED

on 1 O Ballia Version 3 0 Ballia Version 3 0 Rollin V

Three-Part Wedge Stability Analysis

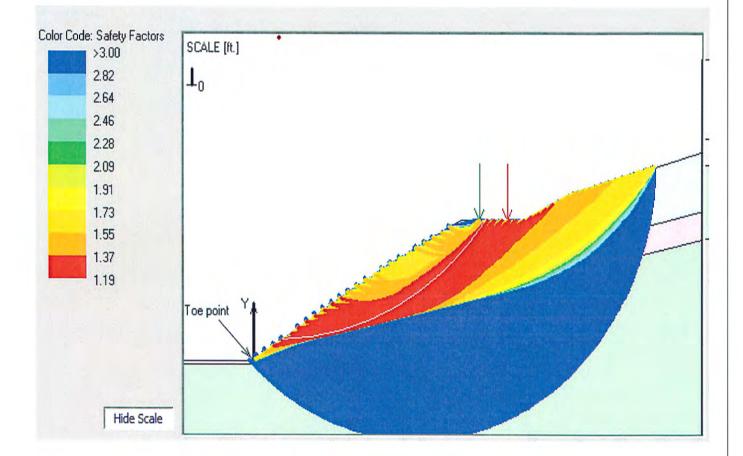
NOT CONDUCTED REINFORCEMENT LAYOUT: DRAWING

SCALE:

0246[ft]

TMWA Penstock Replacement Copyright © 2001-2011 ADAMA Engineering, Inc.

non 30 Re35A Vennon 30 Re55A Ven


www.GeoPrograms.com

Page 8 of 9 License number ReSSA-301581

A Version 3 0 Relia Version 10 Relia

SAFETY MAP: BISHOP ROTATIONAL ANALYSIS MODE

n D O REISA Venue 1 O REISA VENUE 1

Vennes 10 BASSA Vennes 10 BASSA

6980 Sierra Center Parkway, Suite 90 Reno, NV 89511

> July 21, 2016 Project No: 1858 Addendum 1

Mr. Paul Winkelman, P.E. **SHAW ENGINEERING** Reno, Nevada 89503

RE: Geotechnical Investigation TMWA Fleish Penstock Waterline Replacement Fleish, Washoe County, Nevada

Dear Mr. Winkelman,

Presented herein is an addendum to our geotechnical investigation, dated May 31, 2016, for the proposed TMWA Fleish Penstock Waterline Replacement located in Fleish, Washoe County, Nevada. The purpose of this addendum is to provide foundation grade soil preparation recommendations for the Flow Meter foundations and the RCB wing wall foundations.

FLOW METER FOUNDATIONS

Based on the current plans, dated July 2016, Flow Meter foundation grade elevations vary from 5012.2 feet to 5015 feet. Based on the existing grading plans, the west side of the Flow Meter is located overlying fill soils directly over the RCB. The east side of the Flow Meter Box is located overlying shallow cut soils. The geologic profile in this area is anticipated to consist of shallow fill soils overlying native loose to medium dense silty sands.

It is recommended that Flow Meter foundations bear directly on at least 1 foot of structural fill prepared in accordance with recommendations provided in the referenced geotechnical investigation. Existing fill soils as well as the uppermost 2 feet of the native soil profile shall be removed below foundations. Removal shall extend laterally at least 2 feet beyond the edge of the foundation. Consequently, structural fill thicknesses below foundations may be thicker than 1 foot and will be based on the soil profile encountered.

Since the Flow Meter structure straddles the proposed penstock and the penstock will be constructed prior to the Flow Meter, removal of existing fill soils and the uppermost 2 feet of the native soil profile will likely be completed with the installation of the Penstock. It is recommended that foundation soils preparation be completed with the Penstock installation. A representative from our firm should inspect foundation soil preparation.

RCB WINGWALL FOUNDATIONS

The RCB will be constructed in Steamboat Ditch. Wing walls will be constructed on both the downstream and upstream sides of the box. Based on current grading plans, foundation grade elevation is about 5003 feet. Based on our field investigation, at proposed foundation grade elevation, foundations should bear on either granitic bedrock or glacial outwash deposits.

Foundations can bear directly on bedrock. If glacial outwash deposits are encountered, it is recommended to place foundations on at least 1 foot of structural fill to create a uniform bearing surface. Voids or surface irregularities created by the excavation process can either be filled by structural fill or additional concrete.

Mr. Winkelman, P.E. SHAW ENGINEERING, INC. July 21, 2016 Addendum 1 Page 2 of 3

RCB WINGWALL AND FLOW METER FOUNDATION STRUCUTRAL FILL

Structural fill placed below foundations can consist of a 6-inch minus granular native soil free of vegetation, organic matter, and other deleterious material. Structural fill should be placed in maximum 8-inch thick (loose) level lifts or layers and densified to at least 90 percent relative compaction. The required moisture content of the soils, prior to densification, shall range between plus or minus 3 percent of optimum moisture, as determined by moisture-density relationship test results (ASTM D1557). Moisture contents greater than 3 percent of optimum moisture are acceptable if the soil lift is stable and required relative compaction can be attained in the soil lift and succeeding soil lifts.

RETAINING WALL BACKFILL

Retaining wall backfill should be free of vegetation, organic matter, and other deleterious material and shall comply with the material specifications presented in Table 1 (Guideline Specifications for Retaining Wall Backfill).

Table 1 - Guideline Specification for Retaining Wall Backfill							
Sieve Size	Sieve Size Percent by Weight Passing						
6 Inch ¾ Inch No. 40 No. 200	100 70 – 100 15 – 60 5 – 35						
Maximum Liquid LimitMaximum Plastic Index4010							
Soluble sulfates:< 0.10 percent by weight of soil							

Backfill should be placed in maximum 8-inch thick (loose) level lifts or layers and densified to at least 90 percent relative compaction. Over-compaction should be avoided as it will increase the lateral forces exerted on the wall by the soil. Heavy equipment should not be used for placing and/or compacting backfill adjacent to the retaining wall and should be kept a minimum of three feet or at a distance determined by a1H:1V slope away from the base of the wall whichever is greater. Hand compaction equipment should be used adjacent to the wall.

The required moisture content of the soils, prior to densification, shall range between plus or minus 3 percent of optimum moisture, as determined by moisture-density relationship test results (ASTM D1557). Moisture contents greater than 3 percent of optimum moisture are acceptable if the soil lift is stable and required relative compaction can be attained in the soil lift and succeeding soil lifts.

It is understood that weep holes will be used for retaining wall drainage. Drain rock is recommended to be placed directly behind the retaining wall and should have a thickness of at least 12 inches, extending upward behind the retaining wall to 1 foot below finish grade. Drain rock should be encapsulated with non-woven geotextile drainage fabric (refer to Table 2). Drain rock shall meet the requirements of Section 200.03 (SSPWC, 2012) for a Class C backfill.

Mr. Winkelman, P.E. SHAW ENGINEERING, INC. July 21, 2016 Addendum 1 Page 3 of 3

Table 2 – Drainage Geotextile Minimum Strength and Hydraulic Properties							
Trapezoid Tear Strength (ASTM D 4533)	80 lbs.						
Puncture Strength (ASTM D 4833)	80 lbs.						
Grab Strength (ASTM D 4632)	200 lbs.						
Burst Strength (ASTM D 3786)	250 psi.						
Minimum permittivity (ASTM D 4491)	≥ 0.2 sec ⁻¹						
AOS (ASTM D4751)	≤ 0.25 mm						

Based on the required use of this geotextile, strength properties are based on Class 1 survivability rating (AASTHO M288). Products such as a Mirafi 180N, or approved equal can be utilized for this project.

Unless stated in this addendum letter, all recommendations presented in our original investigation remain valid.

If you have any questions or require further information, please contact the undersigned.

Sincerely, CONSTRUCTION MATERIALS ENGI and Randal A. Reynolds, PE Senior Seotechnical Engineer rreynolds@cme-corp.com 12-31-17 Direct: 775-737-7576 Cell: 775-527-3264

V:\Active\1858\report\final report\Addendums\Addendum 1 7-21-16.docx