

WASHOE COUNTY

0

DEPARTMENT OF PUBLIC WORKS

UTILITY DIVISION

P.O. BOX 11130 RENO, NEVADA 89520

SOUTHWEST POINTE EXPLORATION AND WELL CONSTRUCTION REPORT

SEPTEMBER - DECEMBER 1995

by Michael C. Widmer

WASHOE COUNTY UTILITY DIVISION
DEPARTMENT OF PUBLIC WORKS
1195-B CORPORATE BLVD.
PO BOX 11130
RENO, NEVADA 89520

WASHOE COUNTY

"To Protect and To Serve"

1195-B CORPORATE BOULEVARD POST OFFICE BOX 11130 RENO, NEVADA 89520-0027 PHONE: (702) 856-7300 FAX: (702) 856-7310

Feb. 21, 1996

UTILITY DIVISION
DEPARTMENT OF PUBLIC WORKS
John M. Collins, Chief Sanitary Engineer

TO:

Paul Orphan

FROM:

Michael Widmer WW

SUBJECT:

Well Capacity at SW Pointe

I have finished the analysis of the SW Pointe wells and have the following recommendations on the pump sizes and settings.

Specification	Well #1	Well #2
	(Lower)	(Upper)
Well Casing Diameter (inches)	10	12
Pump Capacity (gpm)	350	750
Pump Intake Setting (feet below top of casing)	380	410
Pumping Level (feet below land surface)	320	260
Top of Casing Elevations (feet above sea level)	5,107	5,419

These pumping levels are based on 48 hours of continuous pumping. The pump intake settings are in twenty foot, blank sections of casing within the well screen intervals. The final report on this drilling project will be routed to you for review and comment as soon as the figures are complete. The elevations of the Top of Casing should be accurate to two feet (GPS survey), but I would like to resurvey them next week.

If you have any questions, please do not hesitate to see me.

c: John Collins Dan Dragan Mike helpon and 49 hrs. the pumping levels?

What helpon down they with pumping levels?

wells longer be designed him pumping levels?

Should they shatother, @ certain pumping and should also shatother, automatic automatic automatic shatother.

TABLE OF CONTENTS

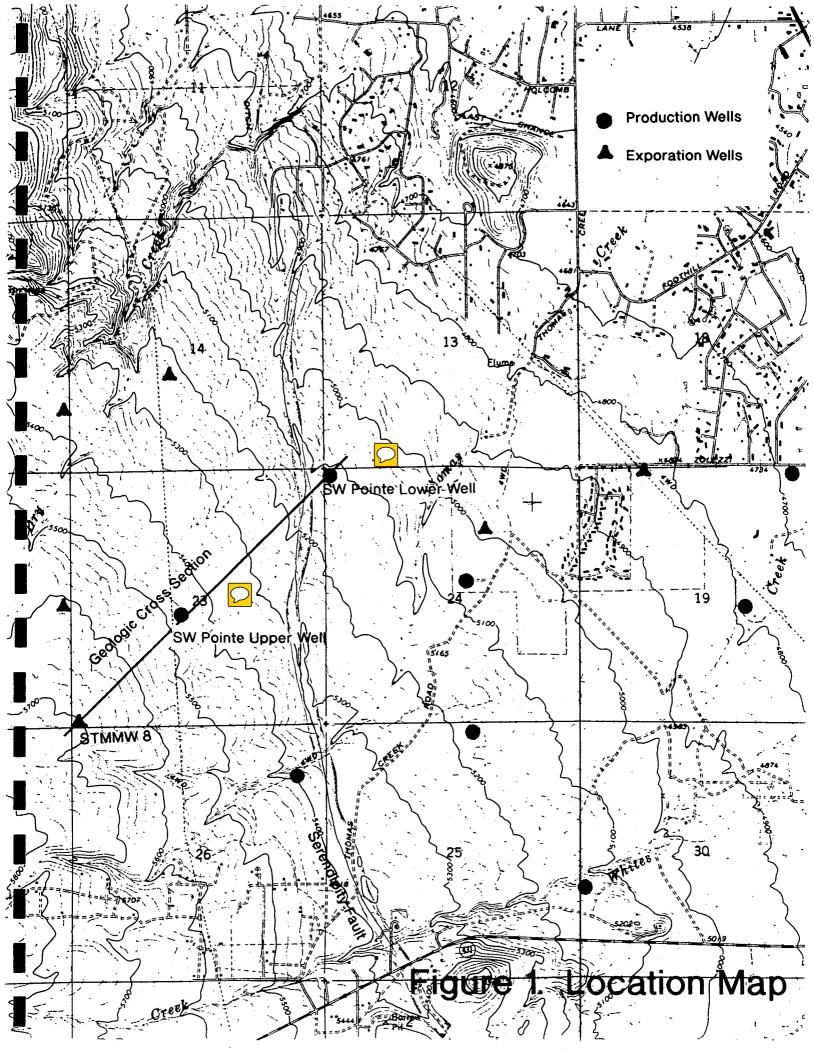
			page
LIST OF F	TIGURES AND TABLES		i
EXECUTI	VE SUMMARY		1
DRILLING	G OPERATIONS	*	1
DESCRIP'	TION OF LITHOLOGY		3
EXPLOR	ATION WELL CONSTRUCTION		6
PRODUC	TION WELL CONSTRUCTION		6
WELL TE	STING		9
WATER (QUALITY		14
CONCLUS	SIONS AND RECOMMENDATIONS		14
REFEREN	ICES	· · · ·	15
APPENDI	CES		
1. 2. 3. 4.	Geophysical Logs Well Drillers Reports Water Quality Reports Pumping Test data		

LIST OF FIGURES

Figure		page
1	Location Map	2
2	Geologic Cross Section	. 5
3	Monitor Well Construction Diagram	7
4	Southwest Pointe Well #1 Construction Diagram	8
5	Southwest Pointe Well #2 Construction Diagram	10
6	Drawdown vs. Time, Constant Discharge Test,	*
	Southwest Pointe Well No. 1.	11
7	Drawdown vs. Time, Constant Discharge Test,	
	Southwest Pointe Well No. 2.	12
8	Drawdown vs. Time, Constant Discharge Test,	
	Southwest Pointe Upper Monitor Well	13
	LIST OF TABLES	
Table		page
1	Description of Lithology, upper site	4
2	Description of Lithology, lower site	4
3	Major Ion Chemistry	14

EXECUTIVE SUMMARY

During the Autumn of 1995, the Washoe County Utility Division contracted with Sargent Irrigation to drill and construct two production wells and one exploration well in the South Truckee Meadows (see Figure 1). Drilling operations commenced on September 5 and were completed November 12, 1995. Testing began December 3 and were completed December 19, 1995.


Exploration efforts at the Upper Well site gave evidence of a relatively thick sequence of saturated, poorly to moderately sorted sediments and warranted production well construction. Saturated sediments were encountered from 100 feet to 710 feet with the Truckee Formation below 610 feet. A 6-inch exploration well was completed in the test hole. An exploration phase at the Lower Well site at depths below previous exploration efforts (Widmer, 1992) proved to be disappointing. The lithology below 500 feet to a depth of 765 feet consisted mostly of altered andesite and/or volcanic breccia with fairly competent andesite from 734 to 765 feet. Static water levels are approximately 100 feet below land surface at the Upper site and approximately 220 feet at the Lower site. It is postulated that the Serendipity Fault, which is mapped between the two sites, is a hydraulic barrier to ground water and that the lithology at the Lower site has been uplifted relative to the Upper site.

At the Lower site, SW Pointe Well # 1 was constructed to a depth of 510 feet with 80 slot Johnson screen from 320 feet to 500 feet and blank casing from 370 to 390 feet. After the step test, a 72 hour constant discharge test (400 gpm) was conducted. The transmissivity was estimated at 5,900 gpd/ft of drawdown. An impermeable boundary was encountered during testing which reduced the effective transmissivity to 3,000 gpd/ft of drawdown. No storativity coefficient was calculated as the monitor well was found to be plugged. The well capacity is rated at 350 gpm with a pumping level estimated at 320 feet below land surface. The pump intake should be set at 380 feet below land surface.

At the Upper site, SW Pointe Well # 2 was constructed to a depth of 610 feet with 80 slot Johnson screen from 260 feet to 600 feet and blank casing from 400 to 420 feet. After the step test, a 72 hour constant discharge test (846 gpm) was conducted. The transmissivity was estimated at 6,200 gpd/ft of drawdown. A storativity coefficient of 0.001 was calculated using WHIP (Hydro Geo Chem, 1988). The well capacity is rated at 750 gpm with a pumping level estimated at 260 feet below land surface. The pump intake should be set at 410 feet below land surface.

DRILLING OPERATIONS

Through a low bid process, Sargent Irrigation was awarded a contract to drill one production well and one exploratory well with the option of constructing a second production well. The Washoe County Board of County Commissioners awarded this contract at their August 22, 1995 meeting. Drilling operations began September 5, 1995

and concluded November 12, 1995. Testing began December 3, 1995 and was completed December 19, 1995. Washoe County personnel supervised the drilling operations and conducted the well testing. At the Lower Site, an exploratory phase of drilling was conducted below 580 feet in order to determine lithology and potential water bearing formations, which proved to be disappointing.

Sargent Irrigation employed a Speedstar 22 mud rotary drill rig to do the exploratory drilling at the Upper Site. The borehole was drilled with a nominal 11 inch tricone drill bit. Mud viscosity was maintained at approximately 35 seconds (Marsh Funnel). The drilling fluid was continuously recycled through mechanical desanders. Washoe County staff lithologically logged the borehole cuttings. After the total depth was drilled, Geo-Hydro-Data successfully logged and provided a standard electric log (see appendix).

The production boreholes were drilled with Sargent's prefabricated, reverse rotary drill rig. The drilling fluid was water mixed with minor amounts of bentonite such that the viscosity was maintained at 31 seconds. Mechanical shakers and desanders were employed. The Lower Site borehole was not E-logged as it was assumed to be the same as the observation well drilled in 1992 (see appendix).

DESCRIPTION OF LITHOLOGY

Table 1 shows the lithology encountered in the exploratory borehole drilled at the Upper Site (Southwest Pointe No. 2). The unconsolidated to semi-consolidated sediments appear to extend to a depth of 610 feet. From 610 feet to 690 feet the cuttings appear to be a weathered and clay altered andesite. At 690 feet to 710 feet (total depth), the Hunter Creek Member of the Truckee Formation appeared with the distinct "Oily" marker bed discovered from previous drilling programs (Widmer, 1992). This marker bed is probably a siltstone with carbonaceous material. The drilling was terminated at this point because of budget constraints and that the Hunter Creek Member could extend to a depth of hundreds of feet.

Table 2 shows the lithology encountered at the Lower Site (Southwest Pointe No. 1). A section of the Hunter Creek Member was found at 210 feet below unconsolidated sediments. This 100 foot section can be described as a diatomaceous siltstone. From 360 feet to 500 feet there were more sediments that could represent a "dirty" sandstone and probably the Lower Hunter Creek Member (Widmer, 1992). At 500 feet a weathered and clay altered andesite was drilled to 580 feet. A five foot section drilled very hard and competent to 585 feet. From 585 to 673 the andesite was "soft" with significant alteration to clay. More competent, but still with significant alteration clay, andesite was encountered to 734. From this depth to 765 feet, hard, fractured andesite was drilled. The drilling was halted at this point due to budgetary and time constraints.

Table 1 Upper Site Lithology

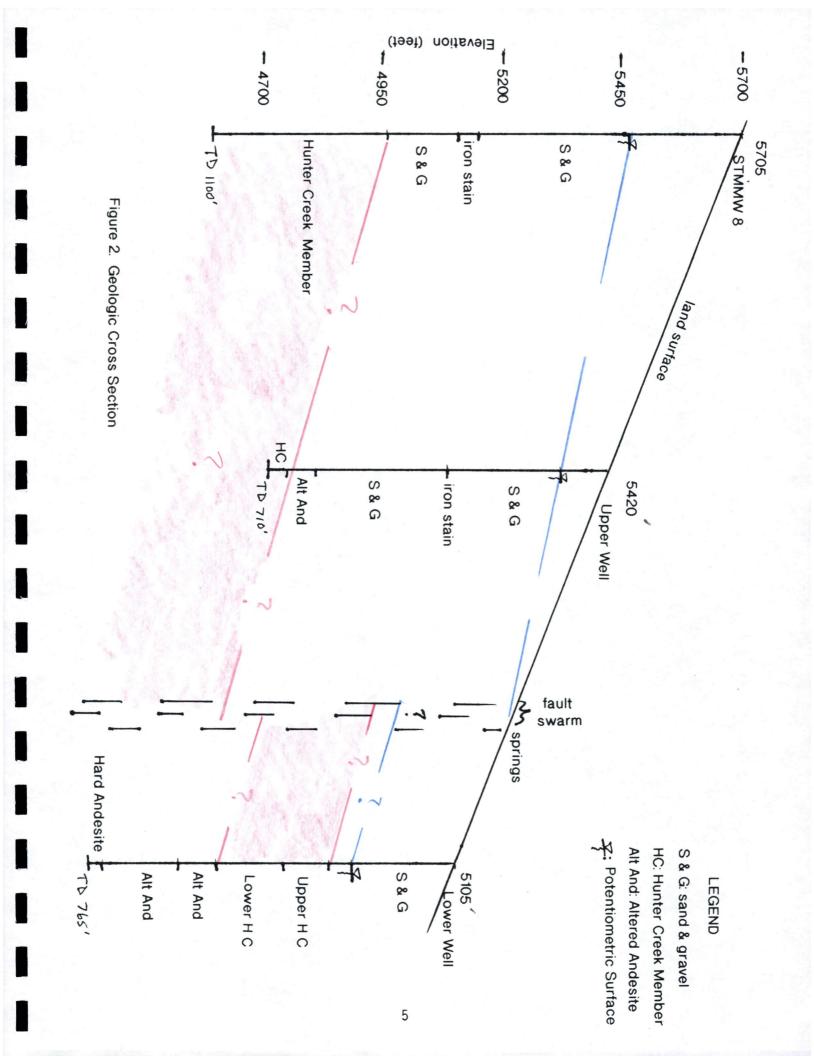

Footage	Description
000-220	silt, sand, gravel, cobbles and boulders
220-240	silty, sandy, gravelly clay
240-342	coarse sand and silt, occasional gravel
342-355	iron stained med. grained sand, distinct, mostly granitic detritus
355-445	clayey, sandy silt
445-485	clayey, silty sand
485-580	clayey, silty, sandy gravel, well rounded to semi-rounded
580-610	fine to coarse sand with clayey or gravelly stringers
610-615	distinct, gray-green, silty, clay w/ andesite fragments
615-620	same with lite brown clay balls
620-670	gray-green, sandy silt with increasing grit
670-690	weathered andesitic cuttings with poor return
690-710	clay or Hunter Creek siltstone, "Oily" marker bed.

Table 2 Lower Site Lithology

Footage	<u>Description</u>
000-180	silt, sand, gravel and cobbles
180-223	silty, sandy gravels
223-260	sandy, clayey silt
260-360	Upper Hunter Creek Member of Truckee Formation
	260-270 creme or yellow, plastic clay
	brown or gray-green diatomaceous siltstone, increasing gravel with depth
360-500	Lower Hunter Creek Member of Truckee Formation
•	360-420 grades to pebbly, sandy, silty clay; brown
	420-500 minor lost circulation, then sandy, silty gravel
500-580	clay altered, purplish andesite
580-585	hard andesite
585-673	soft andesite w/alteration clay, smooth drilling
673-734	clay altered, broken andesite
734-765	hard, fractured andesite with minor alteration clay.

Geologic Cross Section

Figure 2 illustrates a geologic cross section as indicated in figure 1. This section is from STMMW 8 and crosses northeasterly through the Upper well site to the Lower well site. From STMMW 8 the alluvial section is uniform in thickness until the Serendipity

Fault Swarm is encountered. The alluvial section is comprised of silts, sands, gravels and boulders. An iron stained stringer is found at both well sites and may be continuous. A small lens of volcanic flow was encountered in the Upper wellbore (670-690 ft) and may be localized. Beneath this alluvial section is the Hunter Creek Member of the Truckee Formation. The Hunter Creek Member appears to be uplifted on the east side of the Serendipity Fault relative to the west side.

The water table elevations also appear to be affected by the Serendipity Fault whereby the water level on the east side is approximately 250 feet lower than on the west side. This would indicate that the fault swarm acts as a barrier to flow, probably from fault gouge. Further, south of the cross section and along the fault trace, springs can be found.

EXPLORATION WELL CONSTRUCTION

Figure 3 shows the construction of the exploration well completed at the Upper Site. The borehole was drilled at a nominal diameter of 12 inches to a depth of 710 feet. Perforated casing, (double mill slot, 3" x 3/8") extended from 250 feet to 710 feet. Blank casing extended from 250 feet to surface. Six inch casing was used in order to better determine the production capability at this site. Local 1/8 inch x 1/4 inch "pea" gravel was installed by the flooded reverse method. A fifty foot seal was then installed via tremmie pipe and pump.

Seven and one half hours of air lift development occurred. The well was then equipped with a submersible pump and pumped in excess of 250 gpm for several hours. The exploration well was then further completed with twenty one feet of two inch casing grouted inside the six inch casing with locking cap. The recovered static water level was measured at 95.4 feet below land surface on September 19, 1995.

PRODUCTION WELL CONSTRUCTION

Southwest Pointe Well No. 1

Drilling for this production well began October 19, 1995 and was completed November 12, 1995. A 20 inch conductor pipe was installed in a 24 inch diameter borehole to a depth of 100 feet and sealed via tremmie pipe and pump. A 16 borehole was drilled to a depth of 515 feet. Ten inch diameter, 80 slot, Johnson Wire Wound Hi-CapTM screen was implaced from 500 feet to 320 feet with blank sections from 510 to 500 feet, 370 to 390 feet and from 320 to +2 feet above surface. "Chevreaux", washed, 1/8 x 1/4 gravel was implaced via the flooded reverse method to surface. See figure 4.

Initial development was by air jetting for 36 hours which resulted in fairly clean discharge. Surge pumping occurred for 28 hours. Sand production was measured at less than 1 ppm after initial start up after development.

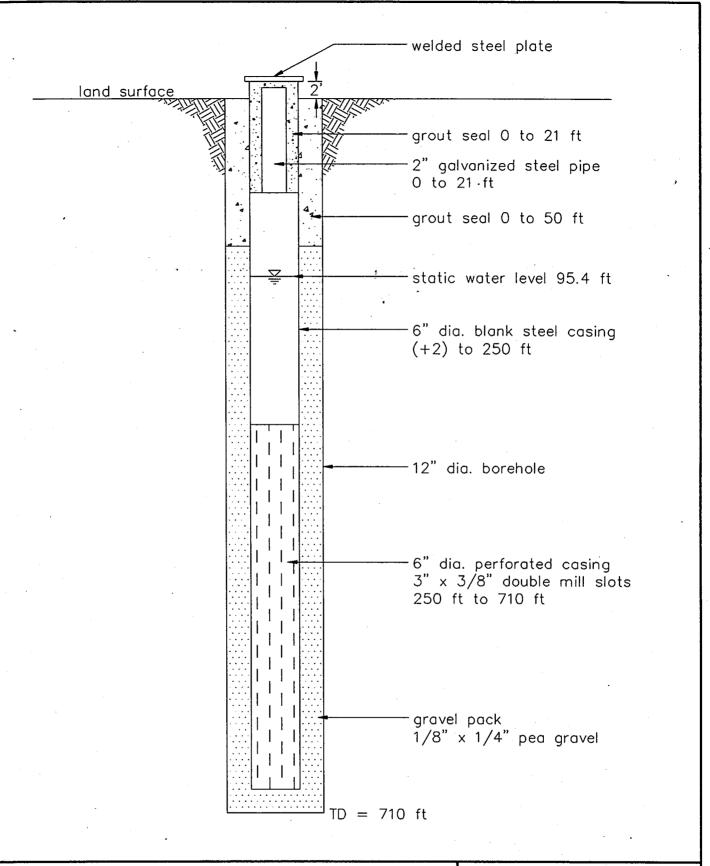
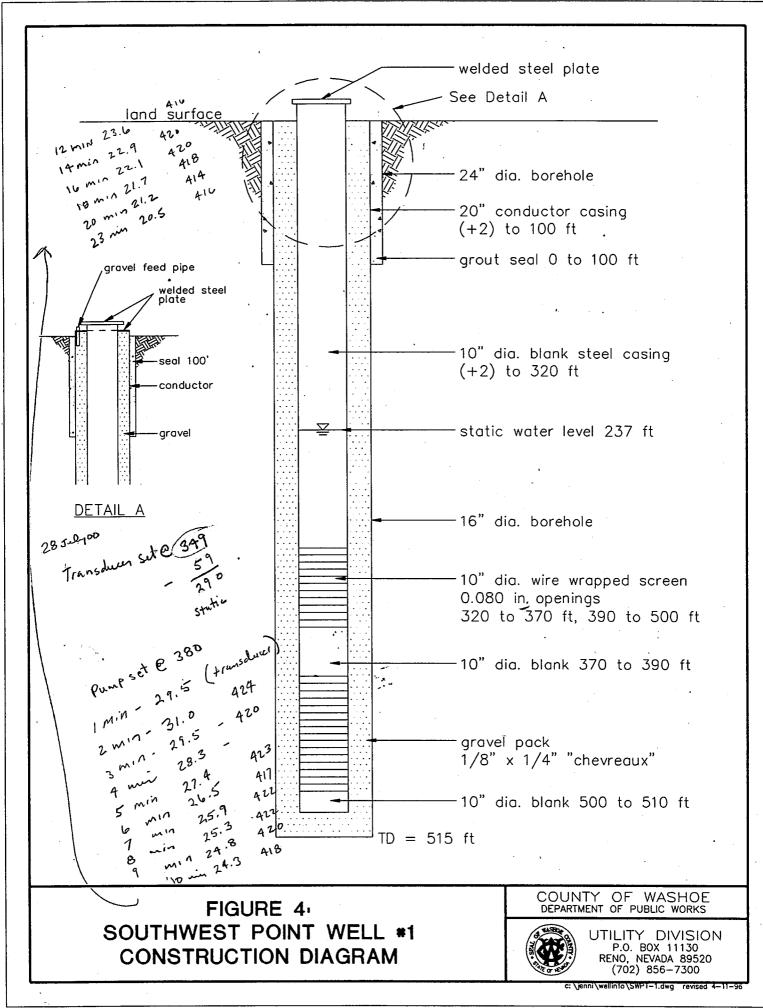


FIGURE 3: MONITORING WELL CONSTRUCTION DIAGRAM COUNTY OF WASHOE DEPARTMENT OF PUBLIC WORKS



UTILITY DIVISION P.O. BOX 11130 RENO, NEVADA 89520 (702) 856-7300 Valued Buck @ 2.4 min. 20.9 417 25 min 20.5 405 27 min 19.8 419

> 20 Aug 02 - Pump out - flow had dropped to 70 gpm from 330

> > STATIC 290.93 - Top of concrete

269.07 -22 augoz (Am) 287.95

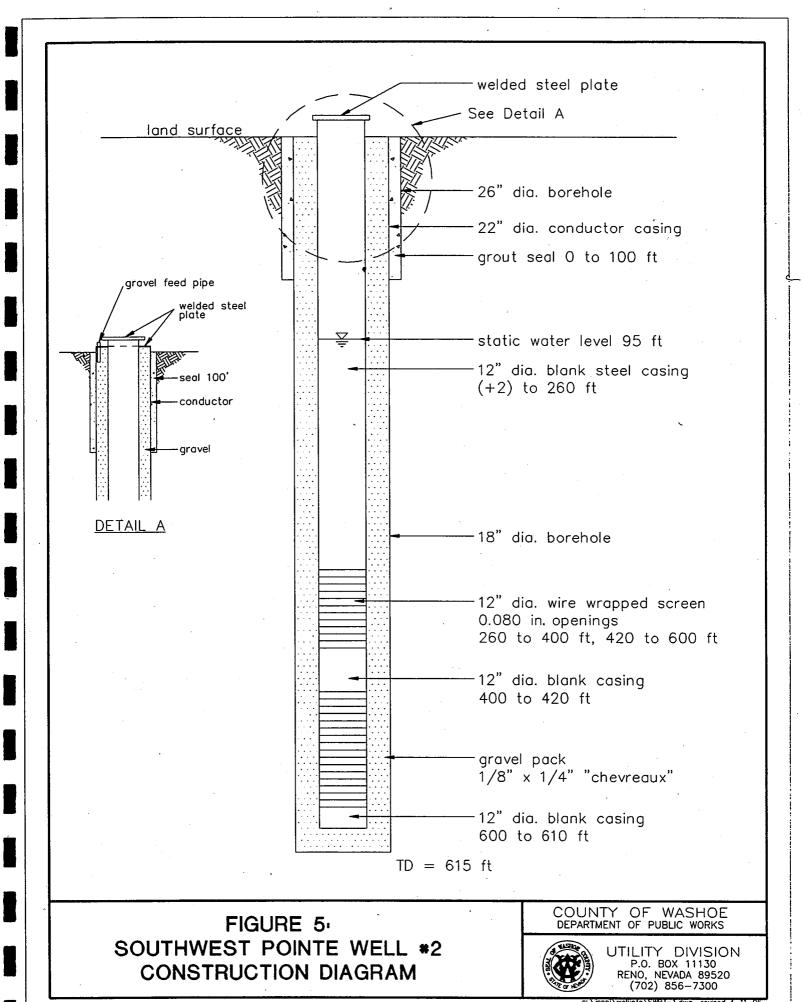
Southwest Pointe Well No. 2

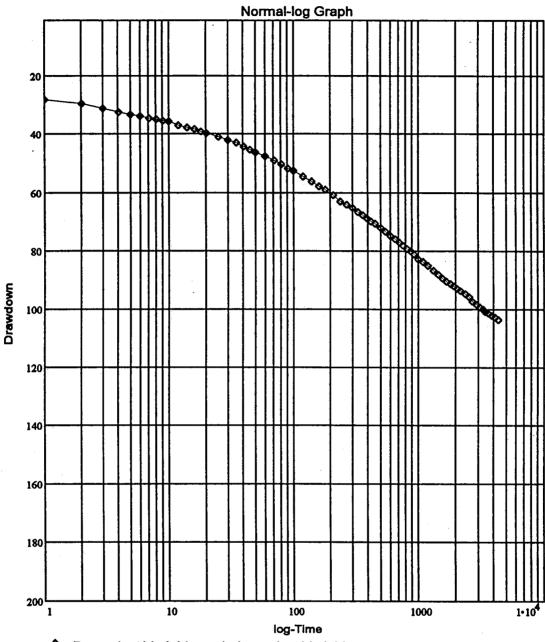
Drilling for this production well began September 25, 1995 and was completed October 7, 1995. A 22 inch conductor pipe was installed in a 26 inch diameter borehole to a depth of one hundred feet and sealed via tremmie and pump. An 18 inch borehole was drilled to a depth of 614 feet. Twelve inch diameter, 80 slot, Johnson Wire Wound Hi-CapTM screen was implaced from 600 feet to 260 feet with a blank section from 602 to 612, 402 to 422 feet and then blank to surface. "Chevreaux", washed, 1/8 x 1/4 gravel was implaced via the flooded reverse method to surface. The construction of the well was completed October 9, 1995. See Figure 5.

Initial development was by air jetting for 37 hours which resulted in fairly clean discharge. Surge pumping occurred for 20 hours. Sand production was measured at less that 1 ppm after initial start up after development.

WELL TESTING

Southwest Pointe Well No. 1


A step test was conducted December 11, 1995. Pumping rates were held for 100 minutes at 367, 416, 467 and 519 gpm. The results of the testing are shown in the appendix. At 400 gpm the well efficiency is 65 percent.


A 72 hour constant discharge test was commenced on December 13, 1995. The discharge was held at 400 gpm. The adjacent monitor well, completed in July of 1992, was not monitored as it was discovered that the well was muddied either through vandalism or inadequate development. The results of the test are illustrated in the drawdown curve shown in Figure 6. The results of the recovery test are shown in the appendix. At the end of the discharge test, the pumping level was 340 feet, 20 feet below the top of the screened interval (320 feet).

Using the well hydraulics program WHIP (Hydro Geo Chem, 1988) and assuming that the aquifer is 1) semi-confined, 2) an impermeable boundary is located 1000 feet to the west (Serendipity fault), and 3) Dupuit conditions exist; the transmissivity is estimated at 6,700 gpd/ft of drawdown. No storage coefficient could be determined from the testing because of the monitor well's condition.

Southwest Pointe Well No. 2

A step test was conducted December 3, 1995. Pumping rates were held for 100 minutes at 419, 634, 846 and 1057 gpm. The results are shwon in the appendix. At 750 gpm the well efficiency is 78 percent.

- Dependent Variable vs. Independent Variable

Figure 6. Drawdown vs. Time, Constant Discharge Test, Southwest Pointe Well No.1

A 72 hour constant discharge test was commenced on December 4, 1995. The discharge was held at 845 gpm. The results of the test are illustrated in the drawdown curves shown in Figures 7 and 8. The recovery test curves are in the appendix. It is interesting to note in Figures 7 and 8 that while the production well's drawdown curve is essentially a straight line, the monitor well response showed a recharge boundary at about 600 minutes. It is assumed that the monitor well response is due to delayed yield. At the

production well, vertical and perhaps turbulent flow conditions may have masked the delay yield phenomena. At the end of the discharge test, the pumping level in the production well was 290 feet, 30 feet below the top of the screened interval (260 feet).

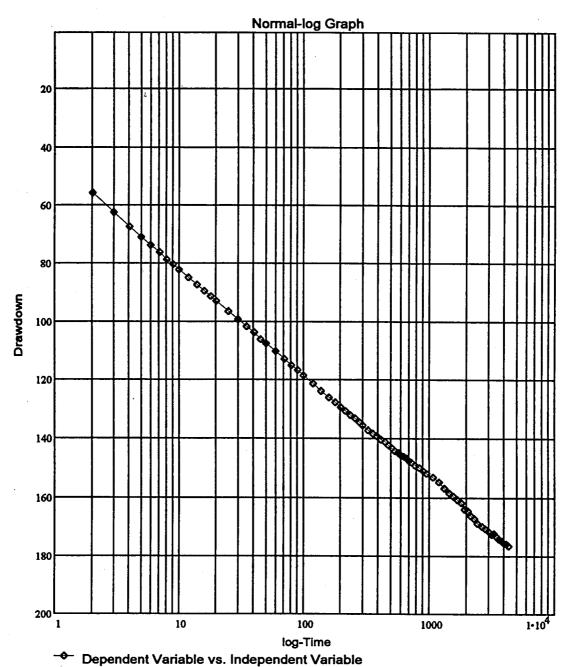
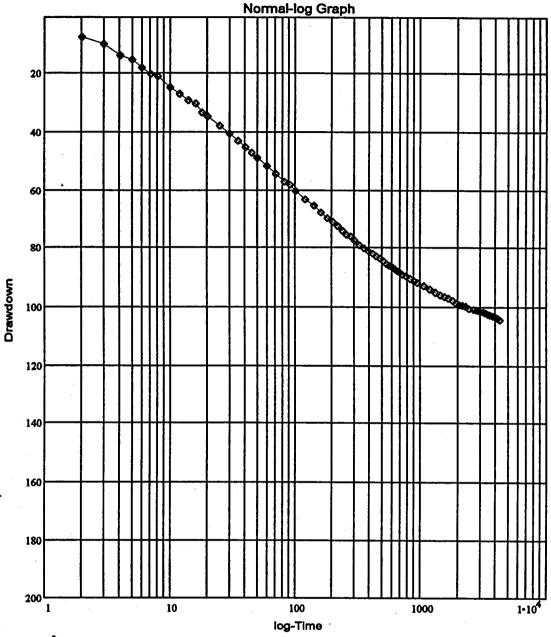



Figure 7. Drawdown vs. Time, Constant Discharge Test, Southwest Pointe Well No. 2.

Dependent Variable vs. Independent Variable

Figure 8. Drawdown vs. Time, Constant Discharge Test, Southwest Pointe Upper Monitor Well.

Using the well hydraulics program WHIP (Hydro Geo Chem, 1988) and assuming that the aquifer is semi-confined and that Dupuit conditions exist, the transmissivity is estimated at 6200 gpd/ft of drawdown. A storage coefficient is estimated at 0.001. Additional WHIP details are listed in the appendix.

WATER QUALITY

Table 3 shows the major ion chemistry for both production wells. Copies of the full analysis, including organic and inorganic are in the appendix. This water chemistry meets all State and Federal drinking water standards.

Table 3
Major Ion Chemistry
(ppm)

Well	Ca	Mg	Na	K	SO4	Cl	NO3-N	HCO3	As	Fe	В	pН
Upper	19	13	11	5	2	1	0.6	151	0.004	0.02	0	7.79
Lower	18	13	13	5	3	1	0.4	149	< 0.003	0.11	0	7.95

CONCLUSIONS AND RECOMMENDATIONS

Both wells were drilled and completed in poorly to moderately sorted alluvial materials. The transmissivity of this portion of the regional aquifer is comparable to that found at STM Production wells 1, 2 and 3. Because of the relatively thin, saturated alluvium and the presence of the Serendipity Fault at the location of SW Pointe Well 1, water production at this site is marginal with respect to municipal supply. Conversely, at SW Pointe Well 2, the saturation of the alluvium is nearly twice that at SW Pointe Well 1 and therefore the corresponding water production capacity is double that of SW Pointe Well #1. These wells should be equipped and operated such that pumping levels will not drawdown too far into the screened intervals of the wells. Otherwise there is the potential of cascading water, causing air entrainment and sand production.

SW Pointe Well #1 should be equipped to pump 350 gpm. At this production level the well is 68% efficient (at 80% efficiency the production is 200 gpm). After 48 hours of pumping at 350 gpm, the pumping level would be 320 feet below land surface. The pump intake should be set at 380 feet which is in a blank section of the well screen.

SW Pointe Well #2 should be equipped to pump 750 gpm. At this production level the well is 80% efficient. After 48 hours of pumping at 750 gpm, the pumping level would be 260 feet below land surface. The pump intake should be set at 410 feet below land surface which is in a blank section of the well screen.

REFERENCES

Driscoll, Fletcher, 1989. *Groundwater and Wells*. Johnson Filtration Systems, Inc., St. Paul, Minnesota. 1089p.

Hydro Geo Chem, 1988. Well Hydraulics Interpretation Program. PC Version 3.2. Hydro Geo Chem, Inc., Tucson, Arizona. 161 p.

Levy, Benjamin, 1995. ADEPT (A Program for Aquifer Data Evaluation. C.H.E.S.S. 67 p.

Widmer, Michael C, 1992. MT ROSE FAN EXPLORATORY DRILLING. Washoe County Department of Public Works, Utility Division. 15 p.

APPENDICES

- 1. Geophysical Logs
- 2. Well Drillers Reports
- 3. Water Quality Reports
- 4. Pumping Test Data
- 5. Bid Documents

INCORPORATED

ELECTRIC MELL LOG

SARGENT TEST HOLE MASSADE COUNTY CONDONY

CHEMO: LDCATION/FIELD

MASSADE COUNTY STATE

: W/A SECTION

: 69/12/35

MIE

: PIG FEET DEPTH DRILLER

B.48 787.38 LOG BOTTOM

LOC TOP

CASING DRILLER

CASTING THICDNESS: CHSING INTE

MACHETIC DECL. BIT SIZE

HATRIX DESITY fluid desity

KEUTRON MATRIX REMARKS

DRICK-SARCENT

HEISHOE COUNTY

OTHER SERVICES:

INVOICE 23/67

388-1

POWEE: N/A

.. ₹

TOWNSHIP

PERMANENT BATUM : G.L.

ELEV. PERM. DAITUR: N/H LOG MESSURED FROM: G.L

.. \$ ELEUATIONS

: X

: M/A

DRL MERSHRED FROM: G.L.

CLEMENTS, OIL D. SHOWHOLTZP

FIELD OFFICE LOGGING UNIT

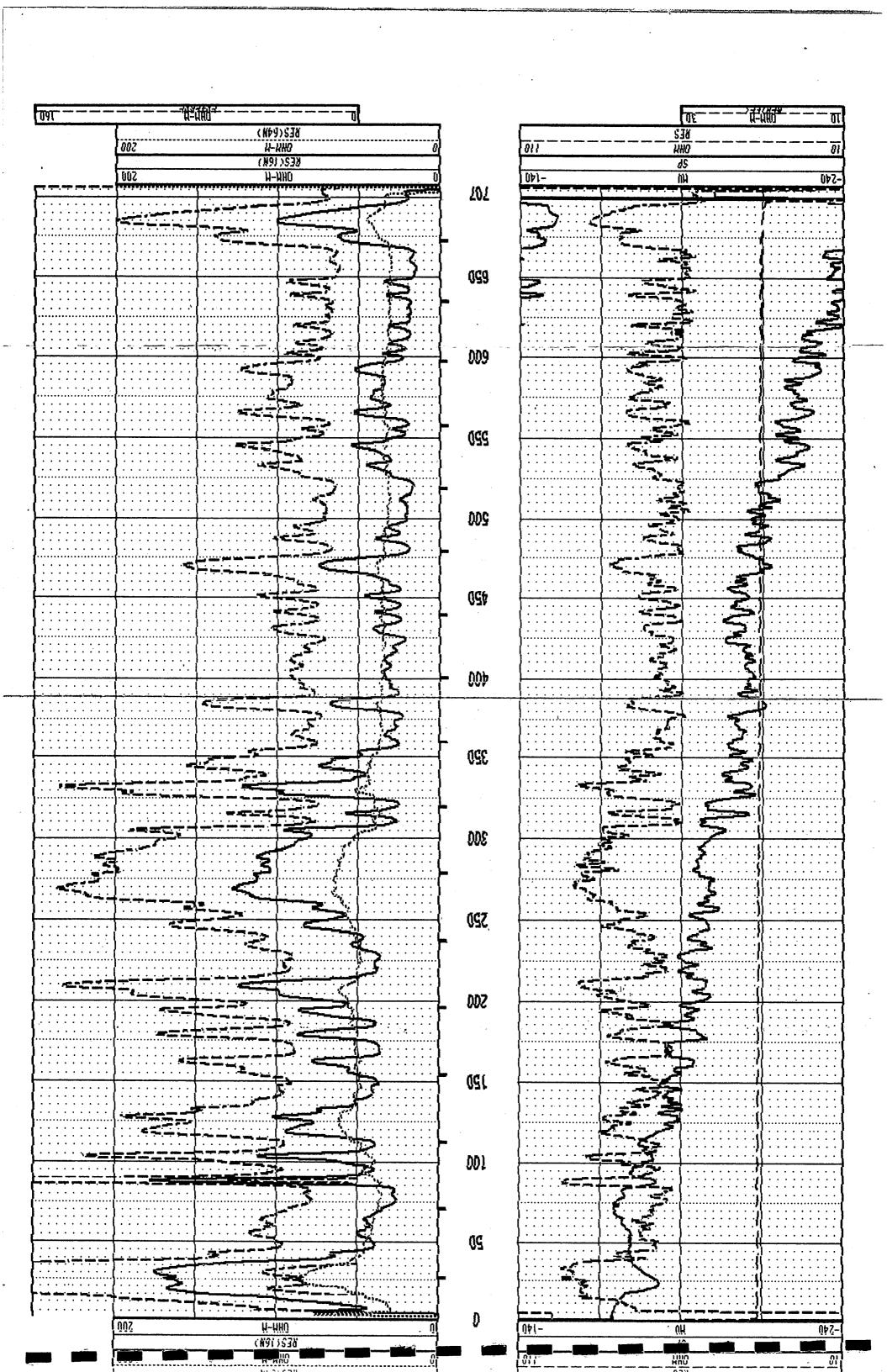
RECORDED BY

FILE : ORIGINAL : 9841A TYPE

: CLAY/CEL

BOREHOLE FLUID

IN TEMPERATURE MATRIX DELTA I FLUID DELTA T


100

PLOT : CHE 11

THRESH: 2000

LATERAL NHM-M

Ė

WHITE-DIVISION OF WATER RESOURCES CANARY-CLIENT'S COPY PINK-WELL DRILLER'S COPY

PRINT OR TYPE ONLY

STATE-OF-NEVADA

DIVISION OF WATER RESOURCES

WELL DRILLER'S REPORT

·	OFFICE USE ONLY
Log No	
Basin 12	
**W(1	

DO NOT WRITE ON BACK Please complete this form in its entirety in accordance with NRS 534.170 and NAC 534.340 NOTICE OF INTENT NO. 31.944.... 1. OWNER WASHOE COUNTY UTILITY DIVISION ADDRESS AT WELL LOCATION MAILING ADDRESS. P.O. BOX 11130 -LOWER WELL RENO, NV. 89520-0027 2. LOCATION NW 1/4 NW 1/4 Sec. 24 _T__18_ ON/S R 19 E WASHOE PERMIT NO._5.71.60 Issued by Water Resources Parcel No. Subdivision Name WORK PERFORMED 3. PROPOSED USE WELL TYPE New Well
Deepen ☐ Replace ☐ Recondition ☐ Domestic ☐ Irrigation ☐ Test ☐ Cable ☐ Rotary ★ RVC ☐ Abandon Other... Municipal/Industrial Monitor ☐ Stock ☐ Air Other... LITHOLOGIC LOG WELL CONSTRUCTION Depth Drilled 765 Depth Cased 765 Feet Thick-_Feet Material HOLE DIAMETER (BIT SIZE) HARD BLACK FINE ROCK 11 11 n From HARD BLACK BASALT COBBLES 11 55 44 28__Inches_ Feet_100 SAND BLACK ROCK COBBLES 55 100 Inches. _Fcet_510 100 SAND ROCK GRAVEL COBBLES 180 80 _Inches__ _Feet___765_ 510-180 200 20 BROKEN ROCK CLAY CASING SCHEDULE BROKEN ROCK SAND GRAVEI 200 217 17 Weight/Ft. (Pounds) Size O.D. Wall Thickness To (Feet) CLAY 217 220 (Inches) GRAVEL ROCK SAND 220 230 10 20" 78.60 375 Ð 100 235 230 5 -CLAY ROCK 10" 28.04 .250 320 <u> 10ii</u> 230 250 15 28.04 GRAY SAND 250 370 390 Porforations: 28.04 250 .250 295 45 BROWN CLAY ROCK 500 510 Type perforation 295 CLAY W/ SAND LAYERS 340 45 -HI-CAP Size perforation. 80 SLOT SAND GRAVEL CLAY LAYE 340 500 160 feet to From. 320 feet 500 585 SAND GRAVEL BROKEN ROCK 85 From. feet to feet 500 585 20 PURPLE CLAY ROCK 605 From. feet to. feet From... -GRAY CLAY ROCK 605 703 98 feet to feet From_ feet to. 703 730 27 feet -GRAY CLAY ROCK 730 Surface Seal: ☐ Yes HARD ROCK W/ SAND 755 25 □ No · Seal Type: ☐ Neat Cement 755 765 10 Depth of Seal... GRAY CLAY 100! Pumped Poured ☐ Cement Grout Placement Method: ☐ Concrete Grout Gravel Packed: Yes Yes ☐ No From_ WATER LEVEL Static water level: 220 feet below land surface Artesian flow... .G.P.M._____P.S.I. Water temperature COOL *F Quality...GOOD DRILLER'S CERTIFICATION This well was drilled under my supervision and the report is true to the Date started..... ----10-21 ..., 19..9.5. best of my knowledge. Date completed... 19 Name SARGENT IRRIGATION COMPANY WELL TEST DATA Address 9955 N. VIRGINIA ST. TEST METHOD: ☐ Bailer Pump ☐ Air Lift Draw Down -G.P.M. Time (Hours) RENO; NV. 89506 (Feet Below Static) Nevada contractor's license number 400 103 72 issued by the State Contractor's Board --- 0021246 Nevada driller slicense number issued by the Division of Water Resources, the ph-site driller 1789 Signed.

RECEIVED

1660 N. Virginia Street Reno, Nevada 89503 (782) 688-1335

125227

1995 DEC 18 AH 9: 47 WATER CHEMISTRY ANALYSIS:

Atta: Fees may apply to some types of samples.

TYPE OF ANALYSIS:

Check here for ROUTINE DOMESTIC ANALYSIS.

Circle the constituents needed for PARTIAL ANALYSIS.

SAMPLING INSTRUCTIONS:

The sample submitted must be representative of the source. Spring and surface water samples should be as free of dirt and debris as possible. Wells should be pumped thoroughly before sampling, changing the water in the casing at least three times. Product water from filters should be sampled after running for about test (10) minutes.

Sampled by T SVETICH Date 12/5/95
Owner WASHOE CAUAITY Phone BS6 7300
Address 10/30 State NV

REPORT TO:

State.


Name TORI SVETTCH / WCVD
Address POBOX 11130
City RENO

All of the information below must be filled in or the analysis will not be performed.

	REASON FOR ANALYSIS:	USE OF WATER:
	Loan	Domestic drinking water
	Personal health reasons	☐ Geothermal
	Purchase of the property	Industrial or mining
	Rental or sale of property	☐ Irrigation
	Subdivision approval	Doiner AUMPTEST
	D Others Dust	Initials PT
	POTENTIA	C FUTURE PUBLIC
	70,00	WATERSUPAL
	SOURCE OF WATER:	
	Filter D Yes No	Type GW
	Public Yes No	Name SW POINTE LOWE
	Spring	Surface
	Well Depth 510 ft.	Casing diameter_1Q.4in.
	HotCold_	Casing depth 5/0 ft.
	IN USE YES TO	At 1
_	END OF TAHE	Alme TEST
F	the cample submitted to this is	borstory.

The results below are representative only of the sample submitted to this inboratory.

				ORY USE ONL		- 40500	. =	PRINT OTHE CONSTITUEN	DESIRED
Constituted 05	202	Constituent 28	2 ppm	Constituent 0.	0 ppm1	Constituent 22	\$.U.	Constituent	9010
T.D.S. • 103° C.	184	Chloride	1	lrou	0.11	Color	5	Cd	10.001
Hardness	98	Nitrate -N	0.4	Manganese	0.00	Turbidity	0.4	Or_	10.005
Calcium	1,8	Alkalinity	122	Copper	0.00	рН	7.95	Aa	10005
Magnesium	13	Bicarbonate	149	Zinc	0.00	EC	238	He	10.000
Sodium	13	Carbonate	0	Barium	0.07	SI@20C -	-0.23	PB	20.00
Potassium	5	Fluoride	ф.07	Boron	0.0			Se	10001
Sulfate	3	Amenic < ()	.003	Silica	60			CYANIDE	1001
MBAS	<0.1		·	aloss Alpha		BERRIUN	10.001	NICKEL!	<0.005
	1			GROSS		THALLIUM	~	ANTIMONY	
Fee	101 104 144 044 0 101 101 101 101 101 101 101 101 101 		Remark	S			Da	M 444 94 24 20 71 72 944 00 447 1 7000000	
Collected by			***************************************	***********************	****************			Jeffers	
PWS 1.D	D /W			·		······································	Try 1	1/16	
SDWAPri	nd A	10		***************************************		**************************************	7		19 10 8 1 - 44 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4
Date Rec'd		Init				• 1 to recor (40 to) ? (QEQ! II	TS REPORTE	
S.U. = Standard Uni	Millierams	per liter		7 · · · · · · · · · · · · · · · · · · ·		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•
110	_		I				JA	N - 9 1995.	11 (Ser. 642) · 6

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183

Boise, Idaho (208) 336-4145

Las Vegas, Nevada (702) 386-6747

ANALYTICAL REPORT

Washoe County Utility Division

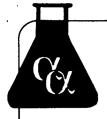
P.O. Box 11130 Reno, NV 89520

Attn: Terry Svetich

Client ID: SW Point Lower Well

Lab ID: WCU121595-01

Sampled: 12/15/95 Received: 12/15/95


National Primary Drinking Water Phase II and Phase V Regulated and Unregulated Synthetic Organic Compounds (SOC's)

EPA		Conce	n Det	EPA		_	_
Metho	d Contaminant	ug/L	Limit		od Contaminant	Concen	
Analy:	zed: <u>12/21/95</u>			Analy	zed: <u>12/27/95</u>	<u>ug/L</u>	Limit
504	1. 1,2-Dibromo-3-			515.1	1. Dalapon	\ TD	
	Chloropropane (DBCP)	ND	0.02	515.1	2. Dicamba	ND	1.00
504	2. 1,2-Dibromoethane(EDB)	ND	0.01	515.1	3. Dinoseb	ND	1.00
	(= -)	- 1.2	0.01	515.1	4. 2,4-D	ND	0.20
Analyz	zed: <u>12/20/95</u>			515.1	5. Pichloram	ND	0.10
505	1. Alachlor	ND	0.20	515.1		ND	0.10
505	2. Aldrin	ND	0.20	515.1	6. Pentachlorophenol	ND	0.04
505	3. Chlordane (Technical)	ND	0.20	313.1	7. 2,4,5-TP (Silvex)	ND	0.20
505	4. Dieldrin	ND	0.20	Anelo	zed: <u>12/21/95</u>	•	
505	5. Endrin	ND	0.01	525			
505	6. Heptachlor	ND	0.04	525	1. Benzo(a)pyrene	ND	0.02
505	7. Heptachlor Epoxide	ND	0.02	323	2. Bis(2-ethylhexyl)		
505	8. Hexachlorobenzene	ND	0.10	525	phthalate	ND	0.60
505	9. Hexachlorocyclopentadiene	ND	0.10	J	3. Bis(2-ethylhexyl)		
505	10. Lindane	ND	0.02		adipate	ND	0.60
505	11. Methoxychlor	ND	0.10	Aneloz	ed: <u>12/27/95</u>		
505	12. Aroclor-1016 (Screen)	ND	0.08	531.1	1. Aldicarb		
505	13. Aroclor-1221 (Screen)	ND	20.0	531.1	2. Aldicarb Sulfoxide		0.50
505	14. Aroclor-1232 (Screen)	ND	0.50	531.1			0.50
505	15. Aroclor-1242 (Screen)	ND	0.30	531.1	3. Aldicarb Sulfone		0.80
505	16. Aroclor-1248 (Screen)	ND	0.10	531.1	4. Carbaryl 5. Carbofuran		1.00
505	17. Aroclor-1254 (Screen)	ND	0.10	531.1			0.90
505	18. Aroclor-1260 (Screen)	ND	0.20	531.1	6. 3-Hydroxycarbofuran 7. Methomyl		1.00
505	19. Toxaphene	ND	1.00	531.1	8. Oxamyl		1.00
			2.00	JJ1.1	6. Oxamyi	ND 2	2.00
	ed: <u>01/04/96</u>			Analyza	ed: <u>12/21/95</u>		
507	1. Atrazine	ND	0.10	547	1. Glyphosate	\TD	
507	2. Butachlor	ND	1.00	241	1. Clypnosate	ND (5.00
507	3. Metolachlor	ND	1.00	Analyza	ed: <u>12/20/95</u>		
507	4. Metribuzin	ND	1.00	548	1. Endothail	.	
507	5. Propachlor	ND	1.00	210	r. Photografi	ND 9	9.00
507	6. Simazine	ND	0.07	Anstra	ed: <u>12/22/95</u>		
			0.07	549	1.Diquat	\TD -	
				- 	iquat	ND 0	.40

ND - Not Detected

Approved By:_

Roger Lescholl, Ph.D **Laboratory Director**

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431

FAX: 702-355-0406 1-800-283-1183

+702+355-1044

Boise, Idaho (208) 336-4145

Las Vegas, Nevada (702) 386-6747

ANALYTICAL REPORT

Washoe County Utility Division

P.O. Box 11130 Reno, NV 89520 Job #:

Phone: (702) 856-7300 Attn: Terri Svetich

Sampled: 12/15/95

Received: 12/15/95

Analyzed: 12/21/95

Alpha Analytical Number: WCU121595-01

Client I.D.: SW Point Lower Well

Report of GC/MS Analysis for SDWA VOLATILES PLUS LISTS 1 AND 3 UNREGULATED COMPOUNDS EPA 524.2

Con	centration		Co	ncentration	Detection
Compound	ug/L	Limit	Compound	ug/L	Limit

8 Regulated Volatile Organic	Compounds	(VOC')	28. Chloroform	MD	0.50 ug/L
(Phase I)			29. Chloromethane) MD	0.50 ug/L
1. Benzene	MD CM	0.50 ug/L	30. o-Chlorotoluene	100	0.50 ug/L
2. Vinyl Chloride	MD	0.50 ug/L	31. p-Chlorotoluene	MD	0.50 ug/L
3. Carbon tetrachloride) MD	0.50 ug/L	32. Dibromomethane	MD	0.50 ug/L
4. 1,2-Dichloroethane) MED	0.50 ug/L	33. m-Dichlorobenzene	MD	0.50 ug/L
5. Trichloroethylene	MO	0.50 ug/L	34. 1,1-Dichloroethane	HD	0.50 ug/L
6. p-Dichlorobenzene	MD	0.50 ug/L	35. 1,1-Dichloropropens	MD	0.50 ug/L
7. 1,1-Dichloroethylene	100	0.50 ug/L	36. 1,3-Dichloropropane	MD	0.50 ug/L
8. 1,1,1-Trichloroethane	100	0.50 ug/L	37. e,z-1,3-Dichloropropene	100	0.50 ug/L
10 Regulated Volatile Organic	Compounds	(VQC's)	38. 2,2-Dichloropropane) MD	0.50 ug/L
(Phase II)			39. 1,1,1,2-Tetrachloroethane	100	0.50 ug/L
 cis-1,2-Dichloroethylene 	MOD	0.50 ug/L	40. 1,1,2,2-Tetrachloroethane) MD	0.50 ug/L
10. 1,2-Dichloropropane	300	0.50 ug/L	41. 1,2,3-Trichloropropane) MD	0.50 ug/L
11. Ethylbensene	MD	0.50 ug/L	List 3 - Monitoring Require	d at State	Discretion
12. Monochlorobenzene) XXD	0.50 ug/L	42. Bromochloromethane) MD	0.50 ug/L
13 o-Dichlorobenzene	MD	0.50 ug/L	43. n-Butylbenzene) MD	0.50 ug/L
14. Styrene	100	0.50 ug/L	44. Dichlorodifluoromethane) MD	0.50 ug/L
15. Tetrachloroethylene	MD	0.50 ug/L	45. Fluorotrichloromethane	į 1870	0.50 ug/L
16. Toluene	100	0.50 ug/L	46. Hexachlorobutadiene	100	0.50 mg/L
17. trans-1,2-Dichloroethylene	100	0.50 ug/L	47. Isopropylbenzene	100	0.50 ug/L
18. Tylenes (total)	100	0.50 ug/L	48. p-Isopropyltoluene	100	0.50 ug/L
3 Regulated Volatile Organic	Compounds	(VOC's)	49. Waphthalene	MD	0.50 ug/L
(Phase V)			50. n-Propylbenzene) MD	0.50 ug/L
19. Dichloromethane) MD	0.50 ug/L	51. sec-Butylbenzene	MD	0.50 ug/L
20. 1,1,2-Trichloroethane	MD	0.50 ug/L	52. tert-Butylbenzene) ND	0.50 ug/L
21. 1,2,4-Trichlorobenzene	MD	0.50 ug/L	53. 1,2,3-Trichlorobenzene	100	0.50 ug/L
List 1 - Unregulated Compound	s - All Sy	tems	54. 1,2,4-Trimethylbenzene	j mano	0.50 ug/L
22. Bromobenzene) XD	0.50 ug/L	55. 1,3,5-Trimethylbenzene	j 1000	0.50 ug/L
23. Bromodichloromethane) MD	0.50 ug/L		į	i i
24. Bromoform) MD	0.50 ug/L	•	ĺ	i i
25. Bromomethane	ND ND	0.50 ug/L		ĺ	j j
26. Chlorodibromomethane) 30 0	0.50 ug/L	1	İ	į i
27. Chloroethane	MD	0.50 ug/L	1	į	i i

ND - Not Detected

Approved By:

Roger L. Scholl, Ph.D. Laboratory Director

Date

1/8/96

WHITE—DIVISION OF WATER RESOURCES CANARY—CLIENT'S COPY PINK—WELL DRILLER'S COPY

STATE OF NEVADA **DIVISION OF WATER RESOURCES**

WELL DRILLER'S REPORT

Log No.
Permit No.
Basin 4

PRINT OR TYPE O						DK D KE		Basın	***************************************	·······
DO NOT WRITE O	N BACK					form in its ent 34.170 and NA		. 35		21040
1. OWNER WASHO	E COUNTY	PUBLI						NOTICE O	F INTENT NO	31942
MAILING ADDRESS	P.O. BOX	11130			***************************************	ADDRESS UPPE	AT WELL L R WELL	OCATION	***************************************	
RENO, NV. 895	20-0027	*******	••••••••••						***************************************	
2. LOCATION NE	1/4 SW	1/4 Se	c. 23	T_18	3	N/S R 19	E W	ASHOE		County
PERMIT NO. 57159	d by Water Res	ources	 	Parcel No.			·····	Subdivision Nam	***************************************	***
	K PERFORI			4.		PROPOSED	IICE	5.	WELL TY	'DE
New Well	Replace	Recond			Domestic		Irrigation	1	Cable Rot	
☐ Deepen ☐	Abandon	Other		🗓	Municipa	l/Industrial	Monitor		Air Oth	er
6.	LITHO	LOGIC LC)G			8.	WE	LL CONSTRU	CTION	
Material		Water Strata	From	То	Thick-	Depth Dril	led 614	Feet De	epth Cased 61	Ecet
BROKEN ROCK, S	AND W/	SHELL		<u> </u>	liess		HOLE	DIAMETER (•	•
TRACE CLAY			0	100	100	1 2	8.0 Incl	From	Feet 100	Feet
AMODGRAVEL CLA	Y LAYERS		100	165	65		·····	100	(10	reet Feet
SAND & CLAY			165	240	75		Incl			Feet
SAND GRAVEL CL			240	340	100	-	C	ASING SCHEE	OULE	
BROKEN ROCK, CL	MI, SAND,	GRAVEL	340	610	270	Size O.D. (Inches)	Weight/Ft. (Pounds)	Wall Thickness		то
					 	22"	86.61	(Inches) . 375	(Feet) + 1	(Feet)
					1	12.75	33.38	.250	+ 2	260
						12.75	33.38	.250	400	420
				ļ	<u>. </u>	Perforation	_{s:} 33.38	. 250 .	600	610
<u> </u>							erforation	HI-CA 80 SLC		
					 -	From		feet to	<u> </u>	feet
					-	From 26		feet to	400	feet
						From 4.2	<u> </u>	feet to	600	feet
						From		feet to		feet feet
· .						Surface Sea	al: 🖺 Yes	□ No	Seal Ty	/pe:
	•					Depth of Se			. DAN	cat Cement
					 	Placement l	Method:	Pumped Poured		ement Grout oncrete Grout
						Gravel Pack	ced: ∑ Ye	_		•
					ļ	J======		feet to		feet
	70-44					9. Static water	level 11	WATER LEVE O		. 1
•						Artesian flo	ICACI			v land surface P.S.I.
						Water temp	erature COO	L °F · Quali		
						10.	DRILI	ER'S CERTIF	ICATION	
Date started 09-2	:5				. 19 95	This well w	as drilled und	er my supervisie	on and the report	is true to the
Date completed 12-0	7				1995	best of my	_	DDTCLTTCM	COMP 4377	
7.	WELL 1	EST DAT	'A			Name 3	ARGENI 1	RRIGATION Contract		***************************************
TEST METHO				☐ Air L	ift	Address_9	955 N. V	IRGINIA ST		
G.P.	M. D	raw Down Below Static		Time (Hou		RE	NO, NV 8	Cootrac 9506	ctor .	
800		78		0 .		Nevada con	tractor's licen	se number	21246	·
								tractor's Board	21246	
				· —		Nevada drill Division	Water Reso	number issued by surces, the on-si	y the	39 ,
			+	 :		# 11 5	Motal	Vato	MYM	11/04
				•		Signed	By driller p	morming actual dri	illing on sac octob	motor)
			_	·		Date	lun	KW 8	1995	

(PCEASE PRINT OR TYPE)

MEYADA SIAIE HEALIH LABUKATUKY

NEVADA DIVISION OF HEALTH

1660 N. Virginia Street Reno, Nevada 89503

(702) 688-1335

1995 DEC -7 PM 4º 33

RECEIVED

125008

WATER C			:					low must be file to the performed to the performance to the per	led in
Attn: Fees may	2pply to sot	ne types of samp	les.		_			-	
TYPE OF All Check here in Circle the co	or ROUTINE	E DOMESTIC A	NALYSIS. AL ANALYS	is.	Townshi General Source A	Location	Range A	ITE HPP	az-
SAMPLING The sample subm water samples sho pumped thorough three times, Prod	itted must be rould be as free ly before sam fuct water from	epresentative of the of dirt and debris	as possible. V	Vells should be	□ Loar	JN FUR ANA onal health reason	ALYSIS:	USE OF WATE Domestic drin	ER: king water
Sampled by	inutes. SYSTL	_ 	m 12/7	1/95	☐ Rent	hase of the proper al or sale of prope livision approval	arty	☐ Industrial or n ☐ Irrigation ☐ Other	
OwnerU	SHOE C	.OPh	one 856	7.300		-SDWA	L		
Address VIII	1	ZULOKELA		<i></i>	FUTU	RE PUBL	.le (,)A:	TER SUPI	
City_FESTION		Sti	tte PU V			CE OF WATE		-CC 5011	- 9
REPORT TO			<i>j</i>			3			
Name	eru S	VETICH /	ساحياد	2	Public	☐ Yes ☑ No	Nai	N EM BOIN	TE UMPRUE
								ing diameter 12	L
State	<u> </u>		ZIP 395	5.3.0	Hot	Cold	Cas	ing depth	fr
					IN USE	U Yes 21	No		
-					END	0E	3DAY 1	JUMP TES	T
	Th	e results below	are repres	entative only o	of the samp	ple submitted t	o this labor	ttory.	
		FOR	LABORAT	ORY USE ONL	. v			PRINT OTHE	R DESIRED
$_{\text{co}}\Omega_{\text{ch}}\Omega_{\text{c}}$ 95	203.	Cost Ruent 25		6 Chairmens 0.		11 Constitution	08	CONSTITUE	T
T.D.S. Q					ppur	Commission	\$.U.	Constituent	ppm
103° C.	163	Chloride	1	Iron	0.02	Color	7	Ch	10.00
Hardness	101	Nitrate -N	0.6	Manganese	0.00	Turbidity	0.3	Cr_	10,005
Calcium	19	Alkalinity	124	Copper	0.00	pH	7.79	Δ_{a}	10.005
Magnesium	13	Bicarbonate	151	Zinc	0.00	EC	236	Ha	0.0005
Sodium	11	Carbonate	0	Barium	0.09	SI@20C	-0.35	06	10.005
Potassium	5	Fluoride	0.08	Boron	0.0			Se	10001
Sulfate	2	Arsenic (0.004	Silica	62	0.4		Par.	(0.00)
MBAS	(0.1	ころう	1001	GROSS		CANNIDE	(001	MANNA	MANNE
	1	11.2		GROSS		NICKEL	10.005	BERRILIUM	(200)
Fee			Barrank				7,003	<u></u>	<u> </u>
• • • • • • • • • • • • • • • • • • • •			Remark				M		
Collected by	1/0	16		1141444 talescenses				5	
PWS I.D		(0X)				147 90 1 60 90 1 64 1 . 1	12	737 12=	······
SDWA—Pri	S	26		***************************************		***************************************	Tog.	1721/95	1 f abl : a.s.
1st2	nd	5rd`		***************************************				7~~	-
Date Rec'd		Snit,		###	77 F 600 Q Q Main , a				
ppm = parts per mill S.U. = Standard Usi	ion Ordenieraus i	per lite r	***************************************		***************************************				***************************************
5.5 5.2.	7 F		4	***************************************	*******************	**************************************	***************************************	••••••••••••••••••••••••••••••••••••••	Om. 4-72)

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183

Boise, Idaho (208) 336-4145

RECEIVED WASHOE COUNT. UTILITY DIVISION

Vegas, Nevada (702) 386-6747

ANALYTICAL REPORT

Washoe County Utility Division

P.O. Box 11130 Reno, NV 89520

Attn: Terry Svetich

Client ID: SW Point Upper Well

Lab ID: WCU120795-04

Sampled: 12/07/95 Received: 12/07/95

National Primary Drinking Water Phase II and Phase V

Regulated and Unregulated Synthetic Organic Compounds (SOC's)

EPA		Concen	Det	EPA		Concen	Det
Method	Contaminant	ug/L	<u>Limit</u>	Method	Contaminant	ug/L	Limit
Analyze	d: <u>12/12/95</u>			Analyze	d: <u>12/13/95</u>		
504	1. 1,2-Dibromo-3-			515.1	1. Dalapon	ND	1.00
	Chloropropane (DBCP)	ND	0.02	515.1	2. Dicamba	ND	1.00
504	2. 1,2-Dibromoethane(EDB)	ND	0.01	515.1	3. Dinoseb	ND	0.20
,				515.1	4. 2,4-D	ND	0.10
Analyze	d: <u>12/13/95</u>			515.1	5. Pichloram	ND	0.10
505	1. Alachlor	ND	0.20	515.1	6. Pentachlorophenol	ND	0.04
505	2. Aldrin	ND	0.20	515.1	7. 2,4,5-TP (Silvex)	ND	0.20
505	3. Chlordane (Technical)	ND	0.20				
505	4. Dieldrin	ND	0.20		d: <u>12/13/95</u>		
505	5. Endrin	ND	0.01	525	1. Benzo(a)pyrene	ND	0.02
505	6. Heptachlor	ND	0.04	525	2. Bis(2-ethylhexyl)		
505	7. Heptachlor Epoxide	ND	0.02		phthalate	ND	0.60
505	8. Hexachlorobenzene	ND	0.10	525	3. Bis(2-ethylhexyl)		
505	9. Hexachlorocyclopentadiene	ND	0.10		adipate	ND	0.60
505	10. Lindane	ND	0.02				
505	11. Methoxychlor	ND	0.10		d: <u>12/14/95</u>		
505	12. Aroclor-1016 (Screen)	ND	0.08	531.1	1. Aldicarb	ND	0.50
505	13. Aroclor-1221 (Screen)	ND	20.0	531.1	2. Aldicarb Sulfoxide	ND	0.50
505	14. Aroclor-1232 (Screen)	ND	0.50	531.1	3. Aldicarb Sulfone	ND	0.80
505	15. Aroclor-1242 (Screen)	ND	0.30	531.1	4. Carbaryl	ND	1.00
505	16. Aroclor-1248 (Screen)	ND	0.10	531.1	5. Carbofuran	ND	0.90
505	17. Aroclor-1254 (Screen)	ND	0.10	531.1	6. 3-Hydroxycarbofuran	ND	1.00
505	18. Aroclor-1260 (Screen)	ND	0.20	531.1	7. Methomyl	ND	1.00
505	19. Toxaphene	ND	1.00	531.1	8. Oxamyl	ND	2.00
Analyze	d : <u>12/26/95</u>			Analyze	d: <u>12/11/95</u>		
507	1. Atrazine	ND	0.10	547	1. Glyphosate	ND	6.00
507	2. Butachlor	ND	1.00				
507	3. Metolachlor	ND	1.00	Analyze	d: <u>12/14/95</u>		
507	4. Metribuzin	ND	1.00	548	1. Endothall	ND	9.00
507 [:]	5. Propachlor	ND	1.00			- · -	
507	6. Simazine	ND	0.07	Analyze	d: <u>12/19/95</u>		
				549	1.Diquat	ND	0.40
					•		

ND - Not Detected

Approved By:_

Roger L. Scholl, Ph.D **Laboratory Director**

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

(208) 336-4145

ANALYTICAL REPORT

Boise, Idaho

Washoe County Utility Division

P.O. Box 11130 Reno, NV 89520 Job #:

Phone: (702) 856-7300 Attn: Terry Svetich

Sampled: 12/07/95

Received: 12/07/95

Analyzed: 12/12/95

Alpha Analytical Number: WCU120795-04

Client I.D.: SW Point Upper Well

Report of GC/MS Analysis for SDWA VOLATILES PLUS LISTS 1 AND 3 UNREGULATED COMPOUNDS **EPA 524.2**

	Compound	ug/L	Detection Limit	Compound	Concentration ug/L	Detection Limit
	8 Regulated Volatile Organic (Phase I)	Compounds	(Vocia)	28. Chloroform		
1.	Benzene			29. Chloromethane	1 100	0.50 ug/
	Vinyl Chloride	XD	0.50 ug/L	30. o-Chlorotoluene	100	0.50 ug/
	Carbon tetrachloride	ļ ¥100	0.50 ug/L	31. p-Chlorotoluene) MD	0.50 ug/
		ן סמבן	0.50 ug/L	32. Dibromomethane	1100	0.50 ug/
	1,2-Dichloroethane	1000	0.50 ug/L	33. m-Dichlorobenzene	i xeo	0.50 ug/
	Trichloroethylene	100	0.50 ug/L	34. 1,1-Dichloroethane) ND	0.50 ug/
	p-Dichlorobenzene	MED j	0.50 ug/L	35. 1,1-Dichloropropene	MD	0.50 ug/
	1,1-Dichloroethylene	i ano i	0.50 ug/L	36 1 2 plats) XED	0.50 ug/
8.	1,1,1-Trichloroethane	i 1400 i	0.50 ug/L	36. 1,3-Dichloropropane	1000	0.50 ug/
	10 Regulated Volatile Organic	Compounds	(VOC's)	37. e,z-1,3-Dichloropropene) MD	0.50 ug/
	(Phase II)		(,,,,	38. 2,2-Dichloropropane	100	0.50 ug/
١.	cis-1,2-Dichloroethylene	1 and 1	0 E0 /- I	39. 1,1,1,2-Tetrachloroethane	i ano i	0.50 ug/
٠.	1,2-Dichloropropane) MD	0.50 ug/L	40. 1,1,2,2-Tetrachloroethane	i mana	0.50 ug/
L.	Ethylbenzene	100	0.50 ug/L	41. 1,2,3-Trichloropropane	1 1200	0.50 ug/
	Monochlorobenzene	10D	0.50 ug/L	List 3 - Monitoring Requi		iscretion
3	o-Dichlorobenzene		0.50 ug/L	42. Bromochloromethane	1 100 1	
	Styrene	100	0.50 ug/L	43. n-Butylbenzene	100	0.50 ug/1
	Tetrachloroethylene	100 j	0.50 ug/L	44. Dichlorodifluoromethane	200 200	0.50 ug/1
	Toluene	100 j	0.50 ug/L	45. Fluorotrichloromethane	:	0.50 ug/
	trans-1,2-Dichloroethylene	16D	0.50 ug/L	46. Hexachlorobutadiene) MED	0.50 ug/
,	Tulence (total)	16D	0.50 ug/L	47. Isopropylbenzene	147D	0.50 ug/
•	Eylenes (total)	MD	0.50 ug/L	48. p-Isopropyltoluene	100	0.50 ug/1
	3 Regulated Volatile Organic C	r) abruoquo	/OC's)	49. Waphthalene	100	0.50 ug/1
	(Phase V)				XED	0.50 ug/I
	Dichloromethane	MD	0.50 ug/L	50. n-Propylbenzene	100	0.50 ug/I
	1,1,2-Trichloroethane	MD i	0.50 ug/L	51. sec-Butylbenzene	XED	0.50 ug/I
•	1,2,4-Trichlorobenzene	1800 i	0.50 ug/L	52. tert-Butylbenzene	T - 1 3000	0.50 ug/I
:	List 1 - Unregulated Compounds	- All Syst	dg/11	53. 1,2,3-Trichlorobenzene	1 100 i	0.50 ug/L
• 1	Bromobenzene	100 J	0.50 ug/L	54. 1,2,4-Trimethylbenzene	i xxo i	0.50 ug/L
. 1	Bromodichloromethane	100 I		55. 1,3,5-Trimethylbenzene	1 200	0.50 ug/L
. 1	Bromoform		0.50 ug/L		· i - i	ug/L
. 1	Bromomethane	100 j	0.50 ug/L		i :	
. (Chlorodibromomethane	1	0.50 ug/L		1 1	
	Chloroethane	1	0.50 ug/L			
		, 100 0	0.50 ug/L		; ,	

Approved By: x

Roger L. Scholl, Ph.D. Laboratory Director

WASHOE COUNTY

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

PUMPING TEST DATA

WELL _	ω. Po,,	STE (L	<u>שנ</u> ב ע	en)
PUMPING	OBSER	ATION	WELL	,
PUMPING	/ RECOVE	RY_DAT	Ά	
PAGE	OF			

TYPE of PUMPING TEST STEP DRAWDOWN	PAGE 1 OF 2
HOW Q MEASURED ORIFICE WELR 6.249" V 43/8"	M.P. for WL's
HOW WL'S MEASURED <u>Electric</u> Sounder	
PUMPED WELL NO.	
RADIUS of PUMPED WELL	PUMP ON: date 1/ Dec 95 time9:30 Am
DISTANCE from PUMPED WELL	PUMP OFF : date time

TIME t = at t'=0 CLOCK ELAPSED TIME + / +'					WATER LEVEL DATA STATIC WATER LEVEL 238.57					WATER PRODUCT.		COMMENTS		
LOCK TIME	ELAPS mins hrs	SED TI	ME t'	t/t [']	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or S'	·	Q	(NOTE OB	ANY CHANGES (SERVERS)		
		1			264.45			25.33	21	366	MW	210.01 State		
		2			268.05			29.48		367				
		3			261.35			30.78						
		4			270,76			32.19	•					
		5			271.71			33.14						
		6			272.27			33.70						
		7			272.89			34.52						
		.8			273.54			34.97						
		9	-		274.10			35.53						
		10		 	274.57	**		36.02						
		12.			275.28			36.31						
		14			276.28			37,7/		-				
		16			27693			38.4 (-				
		18			277, 70	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		39.13		 				
		20			278.23			39.66		- 				
		25			279.61			41.04		-				
		30	-	 	280.94			42 27		+	<u> </u>			
		35			281.98			43.41		 	 			
		40			282.92			44.35		+	-			
-		45	 					45.17	-	- 				
		50	-		283.74			45.85						
		60		 						+				
			-	ļ	285.81			47.24		+				
		70		-				 		-		·		
		80		<u> </u>	288.53			19.96		+				
		90	-	 	289.53			50.96		-		3/ 1.		
		100			290.50			51.93	75	-1/1/	<p.cap< td=""><td>6.35 sem/H</td></p.cap<>	6.35 sem/H		
			ļ	 		STEPT			27	416				
		/		 	294.45			55.88		+				
		3_	 	 	295,57			5700		-				
	50	5			216.06			57.49				·		
	3/3	10	<u> </u>	ļ	296.95		-	58.38		 				
	100	20	ļ	-	218.45			59.88			 			
	20 2	40	<u> </u>	ļ	300.71			62.14		1		 		
	2	60	-	 	302.43			63.86			ļ			
	0 3	80	ļ	ļ	303.97			65.40		<u> </u>	Sp Cap	6-12 9pm/18		
	20 3	100	<u> </u>	ļ <u> </u>	305.38			66 31		111=		5.6.1		
				ļ		STEP TIT			34	467		• · ·		
			<u> </u>		308.45			69.88		_	ļ			
		5			369.67			71.10				· .		

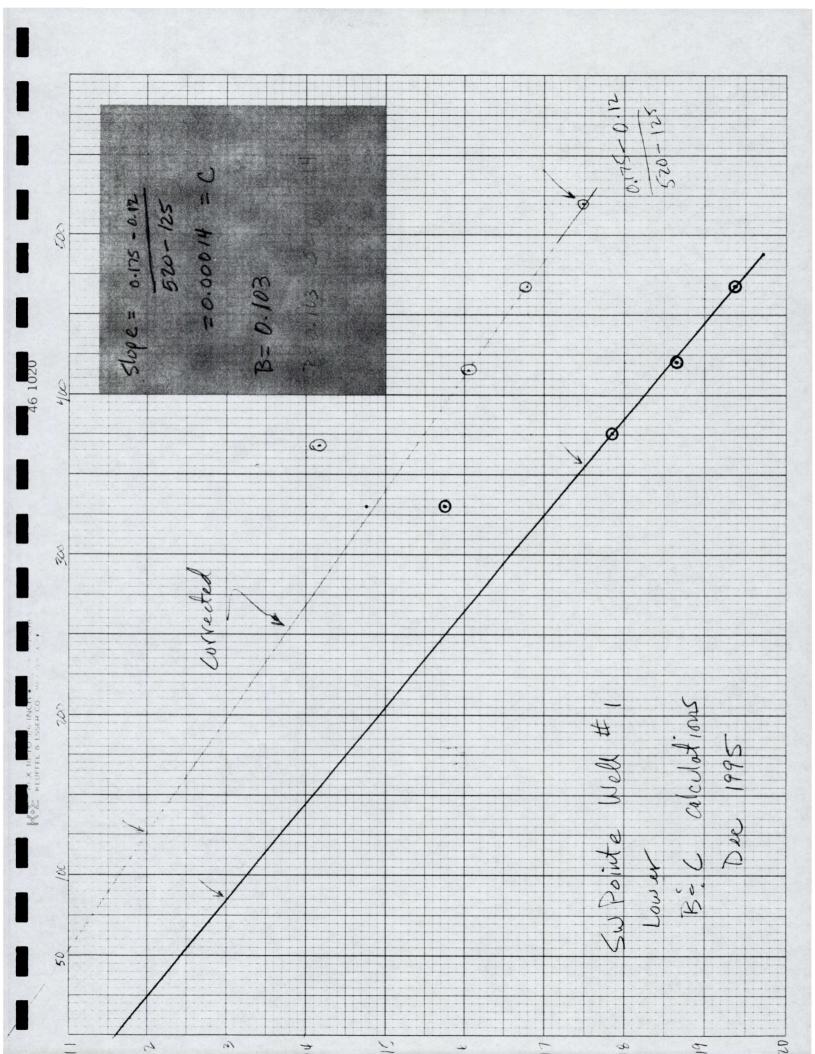
WASHOE COUNTY

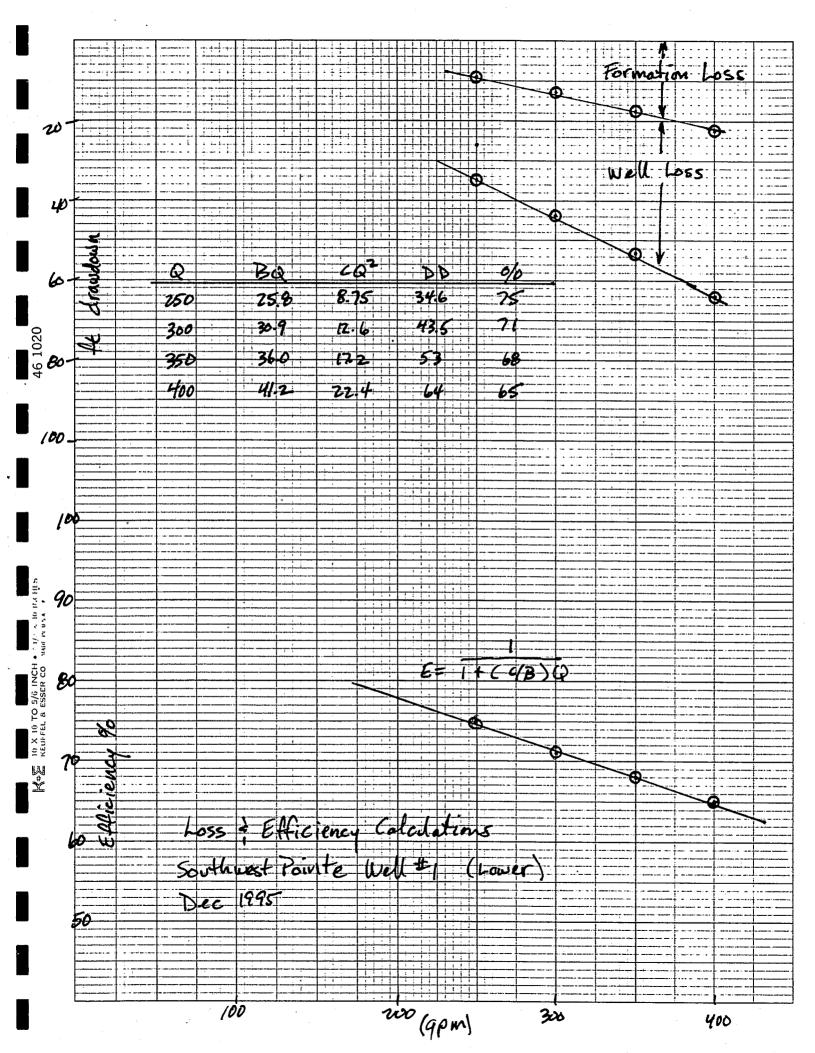
DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

PUMPING TEST DATA

WELL S.W. Pointe (Lower Well)

PUMPING/OBSERVATION WELL


PUMPING/RECOVERY DATA


HOW Q MEASURED	PAGE _2 OF _2	TYPE of PUMPING TEST Step Drawdown
HOW WL'S MEASURED wrt DEPTH of PUMP/AIRLINE wrt	M.P. for WL's elev	HOW Q MEASURED Orthice. Was C 6.249" x 436"
PUMPED WELL NO % SUBMERGENCE: initial; pumping	 % SUBMERGENCE: initial; pumping	PUMPED WELL NO.
PUMP ON: date 1/ Dec 95 time 9:30 DISTANCE from PUMPED WELL		

												ime <u>9.30</u>		
DIS	TANCE	from P	UMPE	WELL	·	PUMP OFF : date fime								
TIME t= at t'=0											ER UCT.	COMMENTS		
CLOCK TIME	ELAPS mins hrs	ED TI	ME †	t/t [']	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or S'		7.	Q	(NOTE ANY CHANGES IN OBSERVERS)		
	40/3	20			3//.29	STEP III Cont	<u> </u>	72.72		34	467			
	0/4	40			3/3.00	U		74.43						
	20 4	60			314.39			75.82						
	109	80			315.73			77.16						
	0/5	100			3/6.97			78.40				5.36 gp-/F1.		
		/			320.30	STEP IV		81.73		42	519	<u> </u>		
	05/5	-5			321 48			82.91						
	20/5	20			323.22		٠	84.65						
	10/5	40			325.05			86.48		,				
-	08	60	_		324.56			87.99						
	20 6	80			328.08			89.51				Send testur.		
	106	100			329.30			90.73				Sounder Batheries Sp. Cap 5.16		
									_			Batteries		
												50. Cap 5.16		
				T .										
											•			
									·					
										<u> </u>	<u> </u>			
				ļ <u> </u>	<u> </u>	<u> </u>								
											ļ			
			<u> </u>						ļ		ļ			
		ļ	<u> </u>						<u> </u>		ļ			
				<u> </u>				<u> </u>	<u> </u>	 	ļ			
		 _	<u> </u>	<u> </u>	ļ			ļ	ļ		 			
•		ļ	_	<u> </u>				-		 	-			
			<u> </u>	<u> </u>	<u> </u>	<u> </u>				 	-			
			↓		1.					 	-	•		
		<u> </u>	<u> </u>	<u> </u>	1		1	1	-		1	-		
-		↓	 	-			<u> </u>	 	<u> </u>	 	-	<u> </u>		
		 	<u> </u>		· -		 		-	 	-	<u> </u>		
<u> </u>				 -		<u> </u>	 	ļ	-	+	 			
<u> </u>		╁—-	 	-	 	-	 			 	+			
<u> </u>			-	-	-	 	 	ļ		┼──	-	 		
	//	 	 	+	<u> </u>	 	 	 	<u> </u>	1	 			
L		<u></u>	<u> </u>	1		<u> L</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1			

1-0 1-0 1-0 1-0 1-0 1-0 1-0 0 0 6000

SEMI-LOGARITHMIC S CYCLES X 10 DIVISIONS PER INCH moutes for a proper of other

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

PUMPING TEST DATA

WELL SW Pointe Lower Well
PUMPING OBSERVATION WELL
PUMPING RECOVERY DATA
PAGE
OF

TOWN ING TEST	PLIMPING RECOVERY DATA
TYPE of PUMPING TEST Constant Q	PAGE_ 1 OF Z
HOW Q MEASURED 4x6 orifice	M.P. for WL's top of 1"PVC alex
HOW WL'S MEASURED Some	DEPTH of PUMP/AIRLINE 408' wrt toc
PUMPED WELL NO. Lower SW Pointe	% SUBMERGENCE: initial; pumping
RADIUS of PUMPED WELL	PUMP ON: date 12/13/95 time 1030
DISTANCE from PUMPED WELL	PUMP OFF: date 12-16-95 time 1030

								PUMP OFF	: date _	10 16	2 75 ti	me <u>/030</u>	
	=	ME at t	'=0		STATIC	WATER LEVEL DATA STATIC WATER LEVEL 236.70				WATER PRODUCT.		COMMENTS	
CLOC	K ELAF	SED T	ME t'	t/t¹	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or S'		gpm	β	(NOTE ANY CHANGES IN OBSERVERS)	
1031		1			264.84			28-14		400	25 in.	17370000	
		2	<u> </u>		266, 22			29,52					
L		3	<u> </u>		267.95			31.25					
<u> </u>		14			269.30			32.60					
		5	ļ		270.13			33.43					
·		6			270.80			34.10					
		7	<u> </u>		271,40			34.70					
		8	1		271.85			35.15					
<u> </u>	-	9	ļ		272,23			35,53					
		10			272.71			36.01					
-	+	12	-		273.98			37.28					
-	+	14	ļ		274.78			38.08					
ļ		16			275,44			38,74					
 _ _	120	18			276.08			39.38					
1050	200	20			276.65			39.95					
-	+	25			277.94			41.24					
<u> </u>		30			279.05	· · · · · · · · · · · · · · · · · · ·		42.35			·]		
		35	· -		280.05			43.35					
 		40			281.39			44.69					
<u> </u>		45			282.35			45.65					
		50			283.18			46.48					
		70			284.62			47:92					
					286.00			49.30					
		80			287.28			50.58					
-	\leftarrow	90			288.55			51.85					
1230		100			289.55			51.85					
1230		120			291.42			54.72					
<u> </u>	\leftarrow	140	-		293.14			56.44				<u>, , , , , , , , , , , , , , , , , , , </u>	
<u> </u>	 	160			294,60			57.90					
1400	$+\!\!\!\!/\!\!\!\!/$	180			295.90			59.20					
					297.75			61.05					
1430	+-	240			299.73			63.03				·	
1/35	\leftarrow	270			300.90			64.20					
1530		300 330			302.15			65.45					
1600	*~~				303.29			66.59					
1630	10	360			304.62			67.92				Q ok	
1700		390			305.67		1	68.97			4	Q oK	
1730		420			306.60			69.90				Q T	
1800		450			307,46			70,76				QOK	
1820	208	500			308.87			72.17			1	01	

WASHOE COUNTY DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION PUMPING T

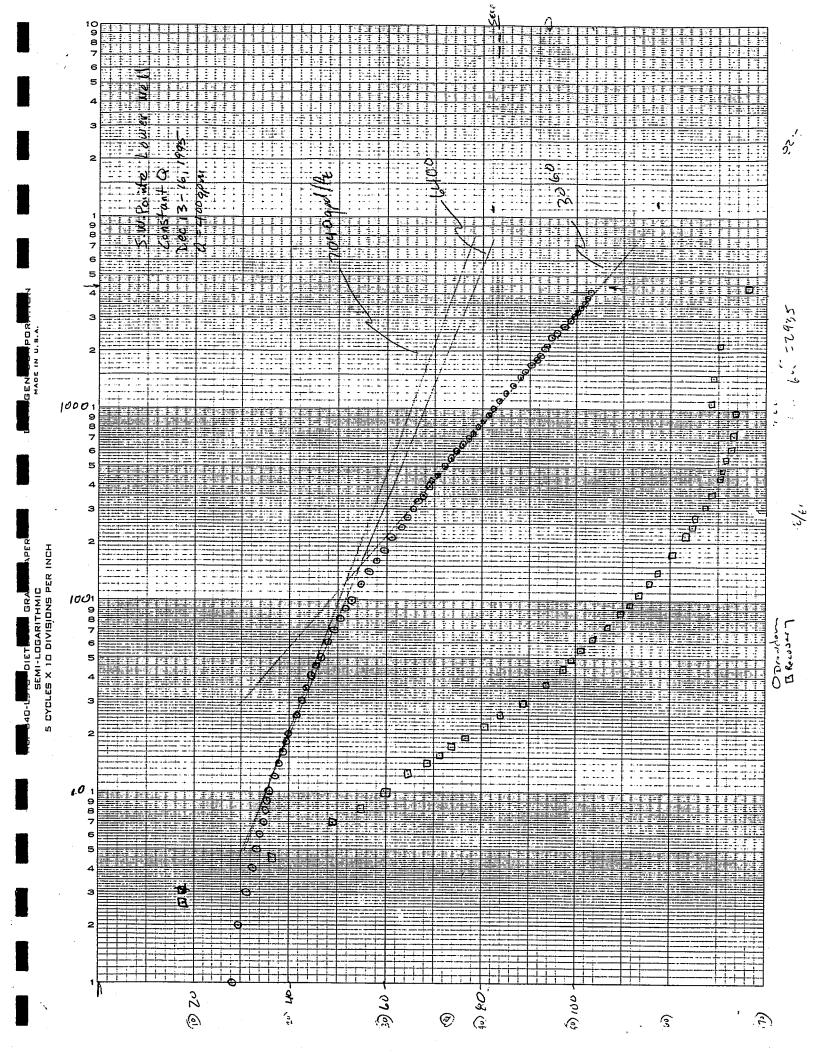
WELL SW Pointe Lower Well
PUMPING OBSERVATION WELL PUMPING RECOVERY DATA
PUMPING RECOVERY DATA
PAGE 2 OF 2

TYPE of PUMPING TEST CONSTANT Q	PAGE _ Z_ OF _ 2
HOW Q MEASURED 4x6 orifice.	M.P. for WL's elev
HOW WL'S MEASURED	DEPTH of DUMP/AIDLING 408
	% SUBMERGENCE: initial; pumping
RADIUS of PUMPED WELL Ho_ 5"	PUMP ON: date 12/13/95 time 1030
	PUMP OFF: date 12-16-95 time 1030

TIME									PUMP OFF: date 12-16-95 time 1030					
	TIME t = at t'=0 CLOCK ELAPSED TIME					WATER LEVEL DATA STATIC WATER LEVEL 236.70					WATER PRODUCT.		COMMENTS	
	CLOC	muns hr:	1	t'	t/t'		CONVERSIONS CORRECTIONS	WATER	Sor S'			Q	(NOTE ANY CHANGES IN OBSERVERS)	
	1940		550	<u> </u>		310.26			73.56		25"	400	OBOLK VERS)	
	2030	2/0	600	<u> </u>		311.56			74.86			100	QT	
	2120	5010				312.71			76.01				QoK	
	2210	1301				313.67			76.97	•			QT EE	
		30/12	750			314.78			78.08				9,720	
ı	2400	13	810			315.89			79.19				FILLER @ 12:30	
4	6100	14				316.88			80.18				Q1	
	0200	40	930			317.90			81.20					
	0310		1000			318.91			82.21				ଦୀ	
ł	0450	//	11.00			320.35			83.65					
	0630		1200			321.62			84.92				Q1 @ 0730	
г	0830		1320			323.41			86.71					
r	1030		1440			324.68			87.98		25"		NW	
	1230		1560			325.94			89.24					
F	1430		1680			326.99			90.29		25"			
-	1630		1800			327.90			91.20		25"			
` -	1830		1920			329.77			92.07				ML	
-	2020		2040			329.60			92.90					
-	2230		2160			330.36			93.62					
-	0130		2340			33/3/	2		94.66				·	
⊢	0430		2520			332.50			95,80					
┢	1120		2706			334.28			97.58				Q1? Ron?	
-	1030		2880			335.35			98.65		25 1/4		ww	
-	1330		3060			336.10			99.40		25/4			
-	1630		3240			336.86			100.16			ī	EE	
,	1930.		3420			337.62			100.92					
ť	2230	\leftarrow	3600			338.20			10/.50		25/4	;	und	
H	1770	\leftarrow	00.15			2 - 0 - 0						•		
-	230		3840			339.69			102.39					
	630		4000			339.70			103.00		2544			
H	030		4320			340-35			103-65	2	.5 14	/	uw	
ŀ		$\langle \cdot \rangle$												
H				-										
H		$\overline{}$			$-\!\!\!\!\!+$									
H		$\overline{}$												
\vdash														
F		\leftarrow				,								
\vdash		$\overline{}$												
┡	 									T				
L		$\angle \bot$						[

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

PUMPING TEST DATA


PUMPING/OBSERVATION WELL PUMPING/RECOVERY DATA

	PUMPING/ RECOVERY DATA/
TYPE of PUMPING TEST CONSTANT Q Recovery	PAGE _ I _ OF _ 7-
HOW Q MEASURED 4x6 orifice	M.P. for WL's top of 1" puc elev.
HOW WL'S MEASURED 1/2 > INIST	DEPTH of PUMP/AIRLINE wrt
PUMPED WELL NOLOWEY SW Cointe	% SUBMERGENCE: initial; pumping
RADIUS of PUMPED WELL	PUMP ON: date 12-13-95 time 1030
DISTANCE from PUMPED WELL	PUMP OFF: date 12-16-95 time 1030

								_ PUMP OFF: date 12-16-45 time				
† =		ME at t	-0		WATER LEVEL DATA STATIC WATER LEVEL 236,70					WATER PRODUCT.		COMMENTS
TIME	ELAP mins hrs	SED TI	ME †	t/t'	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or S'			Q	(NOTE ANY CHANGES IN OBSERVERS)
1030		4320	0	œ	340.35			103.65		25/4	400	und
1031			1_	4321	304.80			68-10				
			2	2/6.1	301.75			65.05				· · · · · · · · · · · · · · · · · · ·
L			3	1441	301.14			64.44	•			
			4	1081	301.73			65.03				
			5	865	303.50			66.80				
<u> </u>			6	721	303.37			66.67				
			7	618	30 3,07			66.37	,			
			8	541	302.56			65.86				
			9	481	302.16			65.46				
		4330	10	433	301.89			65.19				
			12	361	300.90			64.20				
			14	310	300.25			63.55				
			16	271	299.34			62.64	· · · · · · ·			
			18	241	298.91			62.21	,			
		4340	20	217	298.18			61.48	-	`		
			25		296.74			60.04				
1100		4350	30		295.54		-	58.84				
			35		294.45			57.75				
		4360	40		293.35			56.65				
			45	97	29247			55.77				
		4370	50	87	291.60			54.90				
1130		4380	60	73	290.03			53.33				
		4390	70	63	288.60			51.90				-··
		4400	60	55	287.10			60.40				
12:00		4410	90	49	226.15			49.45				
		4420	100	44	285 40			48.70				DAN
1230		4446	120		283.61			46.91				
1.00		4470		29	280,95			44.25			$\neg \neg$	
1:30		4500		25	278 61			41.91				
2:00		4530		21.6	276.81			40.11				
2:30			240		274.98			38,28				-
3:00 9			270		273.49			36.79				
3:30					272.22			35.52				
4:00		4650		14.1	271.03			34.33				*
5:00			390		268.96			32.26				
630		4800			266.10		·	30.60			 	
8:10		4900			26390			27.20				
16:36		5040		7.0	261.23			24.53				16 Dec
0650			1220		254.72			18.02			 +	17 De. G.
لــــــــــــــــــــــــــــــــــــــ		<u> </u>	1000	113	4 J T 1 / F			וטט.מן	J		1	1/ 1/00

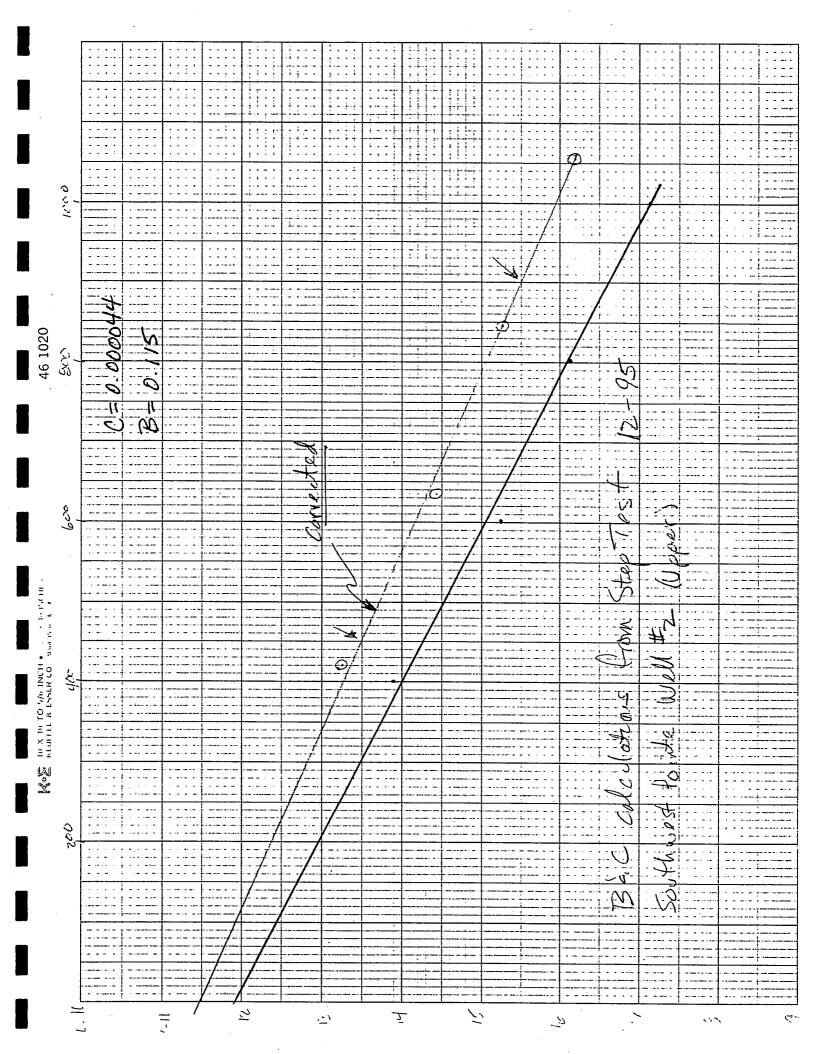
WASHOE COUNTY WELL LOWER SWPOINTE PUMPING/OBSERVATION WELL PUMPING/OBSERVATION WELL **DEPARTMENT OF PUBLIC WORKS** PUMPING TEST DATA **UTILITY DIVISION** TYPE of PUMPING TEST Recovery PAGE _ 2 OF _ 2 HOW Q MEASURED ______ M.P. for WL's ______ elev. _____ HOW WL's MEASURED ______ DEPTH of PUMP/AIRLINE _____ wrt ____ PUMPED WELL NO. ________ % SUBMERGENCE: initial ______; pumping _______; pumping _______; pumping _______; pumping _______; pumping ______; pumping _____; pum PUMP OFF: date 12-16-95 time 1038 DISTANCE from PUMPED WELL ___ WATER WATER LEVEL DATA TIME STATIC WATER LEVEL PRODUCT. at t'=0 CLOCK ELAPSED TIME TIME mins hrs t t' t/t' READING CONVERSIONS CORRECTIONS WATER S or S' LEVEL 254.72 5540 1220 4.5 18.02 7140 2820 2.5 245.44 8.74

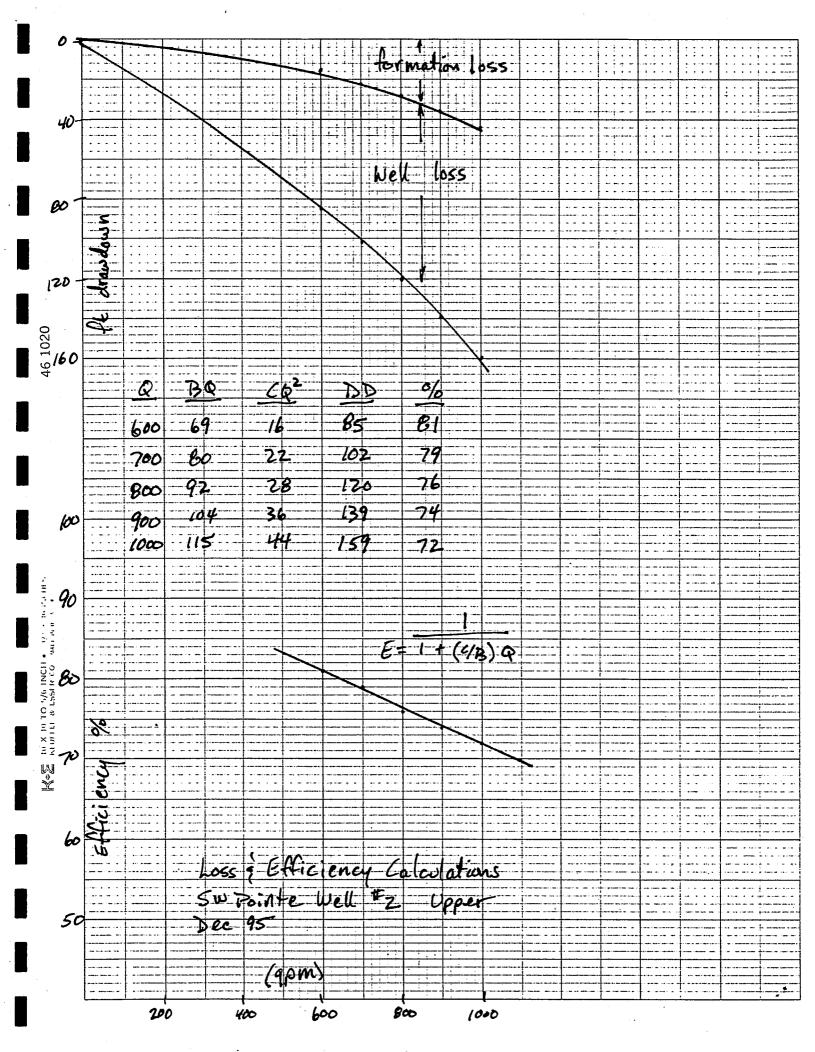
COMMENTS (NOTE ANY CHANGES IN OBSERVERS) 17Dec 95 18 Dec 95

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

WELL SW POINTE UPPER WELL
PUMPING/OBSERVATION WELL
PUMPING/RECOVERY DATA
PAGE 1 OF

TYPE of PUMPING TEST Step Drawdown	PAGE_OF
HOW Q MEASURED DRIFILE WELC 8.249 ID X 6"	
HOW WL'S MEASURED <u>Electric Sounder</u>	_ DEPTH of PUMP/AIRLINE 412_ wrt
PUMPED WELL NO.	_ % SUBMERGENCE: initial; pumping
RADIUS of PUMPED WELL	
DISTANCE from PUMPED WELL	PUMP OFF : date time


DIS	TANCE	from F	PUMPE	WELL				PUMP OFF	: date _		ti	me
t =		ME at t	'=0		WATER LEVEL DATA STATIC WATER LEVEL ///.58				WATER PRODUCT.		COMMENTS	
CLOCK	ELAPS mins nrs	SED TI	ME t'	1/1	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or S'			Q	(NOTE ANY CHANGES IN OBSERVERS)
		,			138.40			26.82		7".	419	
		2			142.91			31.33		1	1	Not enough back
		4			145.73			34.15				pressure to run
		5			146.92			35,34				Sand test
		7		1	148.92			37.44				3222
		9			150.39			38.81				
		10			151,30			39.72				
		12			15287			41.29				
		15			154.23			42.65				
		_ 17			154.18			42,60				
		20			156.07			44.49				
		25			157,82			46.24				
		30			158.53			46.95				
		35			159.03			47.45				
		40			161.10			49.52				
		45			162.06			50.48	V			
		50			162.80			51.22				
		50			163.90			52.38				
		70			164.85			53, 27				
		86			165.68			54.10				
		90			166.48			54.10				•
• .		100			167.16	Sp Cap 7.20		55.58	٠			SP Cap 7,20 gpm/c+
						STEP 2	•	•				4
		2			181.57			69.99	16"	16"	634	
		5			185.90			74.32				
		12			190.18			78.40				MON, well 143.15.
		16			191.86			80.28				
		24			193.95			82.37		-14		
		30			195.10			8352				
		40			196.90			85.32				4.1cc sand
		50			198.55			86.97	-			MONWELL 150 81)
		65			200.30	-		88.72				
		80			201.69		· · · · · · · · · · · · · · · · · · ·	90.11				(MON WELL 155.01)
		100			203.01	Sp(ap 6.56		91.43				Sp Cap 6.56 gpmfft
-					-	STEP 3						
		5			221.75			110.17		28.5"	846	NO SAND
		10			225.52			113.94				
		20			229.28			117.70				PUMPING MON Well SAND 167.58
		35			232.85			121.27				0.1cc/2min
		50	1									0.24 @ 4 mm


DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

WELL _	S.W. Poin	+ upperw	ell
QUMPIN	® ∕OBSERV	ATION WELL	_ '
PUMPIN	GY RECOVE	RY DATA	-
PAGE	2 OF 3	.	

TYPE of PUMPING TEST Step Drawdown PAGE 2 OF 2	
HOW Q MEASURED M.P. for WL's elev	1
HOW WL'S MEASURED DEPTH of PUMP/AIRLINE wrt	
PUMPED WELL NO % SUBMERGENCE: initial; pumping	
RADIUS of PUMPED WELL PUMP ON: date 30ec95time _ O805	
DISTANCE from PUMPED WELL PUMP OFF: date time	

DISTANCE from PUMPED WELL PUMP ON: date 306										timetime		
						WATER LEVE				WAT		
t =	TIME t = at t'=0 CLOCK ELAPSED TIME (A')					WATER LEVEL DATA STATIC WATER LEVEL ///. ≤0					UCT.	COMMENTS
CLOCK TIME	ELAPS mins hrs	SED TI	ME t'	t/t'	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or S'			Q	(NOTE ANY CHANGES IN OBSERVERS)
•		45			234.68		-	122.50			846	0.3cc Sand @ 6 min
		60			236.81			125,23				0.48 as 12 10 min
		80			238.70			127,12	•			50:30 sturt 04:30=
		100			24051	Sp (ap 6.20		128.93	•			0.6 cc@16 min
						Reset Sand Test	<u> </u>					0.78eg @ 30 min
								<u>_</u> .				0.85cc @ 50mm
						STEPTIL						Mon well 1786298
		2	·		255.0			143.42			1057	
		5			260.02			148.44				
						Sand .08 @ buin						Sgal 7min
		20				Sand .35@ 21min		155.72				
 		40			273 .00	.75@31mi		161.42				
-		60			277.03	1.1@ 60MIN		165.95			•	
		80			280,46	1.5@ BOMM		168.88				Manuell-202.07)
		100			282.78	1.75 @ 100 pm		171.20				
<u> </u>						30 rap 5.84					*	1. Sounder for lower
			ij.									2. Small Tape messic
					····							3,
							 _					
							•					
						,						
						· ·						
										·		
				·								
			`.									

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

				UATER
PUMPI	VG/089	SERVAT	ION WE	FF
PUMPIN	1G/REC	OVERY	DATA	
	^			

FUMPING RECOVERY	ΡΑΤΑ
TYPE of PUMPING TEST ON STANT () PAGE 2 OF 2	_
HOW Q MEASURED 8.249 × 6" M.P. for WI 's TOP OF STILL WE'TH ALSO	_
HOW WE'S MEASURED SOLIDER DEPTH OF PLIMP/AIRLINE	4
PUMPED WELL NO. SOUTHWEST FOINT UPPER WELL % SUBMERGENCE: initial ; pur	moina . ,
RADIUS of PUMPED WELL PUMP ON : date _4 DEC 95 time _ 10	000
DISTANCE from PUMPED WELL PUMP OFF: date time	

DISTANCE from PUMPED WELL PUMP OFF: date time									ime				
TIME t = at t'=0 CLOCK ELAPSED TIME					WATER LEVEL DATA STATIC WATER LEVEL 113.27					WAT		COMMENTS	
CLOCK TIME	minshr	3EU 11	t'	1/1	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	Sor S'	٦.		Q	(NOTE ANY CHANGES IN OBSERVERS)	
1730	30/ 4	450			254.43			:41 :31				O O D L I I I I I I I I I I I I I I I I I I	
1305	- K	رد ا			255.35			142.03	5.6	—			
1830	30 8	510			256.18			147.91					
1900	<u>-</u> /9	£40			257.30			144 03	7.			Q个	
1930	30/9	570			257.93	SANG 0152 1935		144.66				Q [†]	
2000	70	600			258.72			145.45					
2030	30/10	630			259.32			146.05					
2100	- 11	660			259.95			146.68	5.5				
2130	30/1	690			260.57			147.30					
2200		720			261.20			147.93				Dix mul	
2390	\angle	780			262.25			148.98					
2400		840			263.08			149.81	5.3			9 f	
0100	/	900			264,20			150.93					
2207		160			265.31			151.74					
5400		1080			26630			15 3.02		-		21	
0605	/	1200		,	268.01			1=4.80				Q1	
ó80o	722	1320			270.25	EFIL C. 21 2 5901		156.93	5.!	1	-	41	
1000		1440				SANE 0.09@ 1110		158.43	5.0			Q1 @ 1045	
1200	- Zb	1560			272.98			159.71	Ξο			Q1 @ 1045	
14-00	28	1680			274.12	24.15 2.20@ 14.00		160.35	4.9			Q+ Q 1300	
1600	- 30	1800			275.31			161.86				DAN Q1	
1800	32	1920			277.24	SANP 0.40		163.97				DEWY WI	
2000	34	2040			277.83	0.40		164.56		1	·		
2200	36	2160			279.56	0.50		166.29				QoK RV	
0020	20/38	2300			280.28	0.70		167.01			-	Q1	
2240	40 40	2440			281.85	0.90		168.58				Q 0 K (e 03/5 +00)	
0600	0 44	2640			283.09			169.82				Q ok (@ 0645 +00)	
0900	47	2820			283.70	2 20 - 20		170.43				Q + @ 0815 EE	
1200	50	3000			284.52	2.40 0.00 8:30 0.55\$ 11.30		171.25				Q+ @ 1100	
1500	<u>-</u> 53	3180			285.79	54NO 0.90@13:00 1.50@1500		172.52				Q+@ 1330 DAN	
1700		3300			19658			172.26	7		Q^	Squal 17min for send test cales	
1910		3430			286.66	sand @ 2.1 @ 1910		173.39			ok	TEST CARE	
2260	-/60	3600			287.40			174.13				EE	
0100		3780			287.93			174.66				Q↑	
0400	- 66	3960			288.60			175.33				~ .	
700	- 69	4140			289.10			175.83		 		QT	
1000		4320			289.96			176.69				<u>~</u>	
										-			
					:						- 		

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

WELL SW. POINTE	WPPERWELL
PUMPING OBSERVAT	TION WELL
PUMPING OBSERVATION OF THE PUMPING O	Y DATA

TYPE of PUMPING TEST Constant O	PAGE 1 OF 2
HOW Q MEASURED Orfice were 8.249" x6"	M.P. for WL's top of stilling well
HOW WL'S MEASURED <u>Electric sounder</u>	DEPTH of PUMP/AIRLINE 490 wrt 400
PUMPED WELL NO.	% SUBMERGENCE: initial; pumping
RADIUS of PUMPED WELL	PUMP ON: date 40ec 95 time 1000

DISTANCE from PUMPED WELL PUMP OFF: date .										12/4-		
TIME t = at t'=0 CLOCK ELAPSED TIME											ER OUCT.	COMMENTS
CLOCK TIME	ELAPS mins hrs	SED TII	ME †	†/†¹	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or S'	Sp. 39 /		Q	(NOTE ANY CHANGES IN OBSERVERS)
		2	} 		169.42			56.15	14.3	23.5"	800	,
		3			175.98	0.17 smde3.		62.71	12.8			Ron-Sargent irrigation
		4	ļ 		180 79			67.52	11.8			emplayee controls
		5			18433	0.18		71.06				Employee controls flow w/engine
		6			187. 11			73.84				throttle.
		7			189.58			76.31				
		8			191.86	0 18		78.59				
		9			193.69			80.42			<u> </u>	Good flow control
		ю			195.97			82.20	9.7			
		12			198 18	0.18		84.91				
		14			200.79		_	87 47				
		16	,		202.99			89.67				
		18			204.84			91.57				
		So			206.42	cloudy		93.15	ه. و			
		25			20992	٥.3 دد	•	96.65				cloudy more sand
		3ь			212.76	0,4266		99.49				
		35			215.26	0.5100		101.99				
		40			217.15	0.60		103.88	7.7			
		45			219.36	ا ما ، ٥		106.69				?
		50			220.94			107.67				
		60			223.63	0.70		110 36				
		70	,		226.39	0,72		113.12	T			Sp Cxp 7.37
		80			228.50			115.23				
		90			230.25	0.73		116.98				ر.
		100			231 92	0.85		118.65	6.7			
		120			234.87	0.90		121.60				
		139			237.17			123.90	1			
		160			239.45			126.18				
1:00 PM		180			241.09	0.1000		127.82				
,		200			242.69			129.42				·
		219		1	244.13	0.10 (2		130.86	1			Sp.Cip 611
-		240			245.35			137.03			Ì	
		260			246.57			133.30	1			
		280			247.84	0,1100		134.57	5.9			
1500	- 5	300			248.87			135.60				
1530	30 5	330			250.49			137.22	+			EE
1600	100	360	1		~51.58	SAND STRAT @ 1665		138.31	5.3			
1630	30 6	390			252.59			139.32	5.7			QT
1700	0 7	420			253.70			140.43	5.7			
			<u> </u>					<u> </u>	1		1	

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

WELL SW. Pointe upper Monis	P ነጥ ቀ1 's
PUMPING OBSERVATION WELL PUMPING RECOVERY DATA	<u> </u>
PUMPING/ RECOVERY DATA	
PAGE OF Z	

OTICITY DIVISION		PUMPINE RECOVERY DATA
TYPE of PUMPING TEST Constant	Q	PAGE OF
HOW Q MEASURED	· 	M.P. for WL's top of Cocy elev DEPTH of PUMP/AIRLINE wrt
HOW WL'S MEASURED electric S	muder	DEPTH of PUMP/AIRLINE wrt
PUMPED WELL NO. SOUTHWEST POINT	E JAMER WOLL	% SUBMERGENCE: initial; pumping
RADIUS of PUMPED WELL		PUMP ON: date 4 lec 95 time _ 1000
DISTANCE from PUMPED WELL		PUMP OFF: date 7 Dec 95 time 1000

DISTANCE from PUMPED WELL PUMP OFF: date 7 Dec 95 time 10000												
TIME t = at t'=0 CLOCK ELAPSED TIME					WATER LEVEL DATA STATIC WATER LEVEL 108.47						ER UCT.	COMMENTS
CLOCK TIME	mins hrs	SED TIN	NE 1	t/t ¹	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	(S)or S'	=		Q	(NOTE ANY CHANGES IN OBSERVERS)
		_ i _										EE
		2			116.17			7.70				
		3			118.72	114-18		16. 25				
		4			122.65			14.18				
005		5			123.80			15.33				
		6			126.77			18.30				
		7			128.74			20.27				
		8			129.57			21.10				
		10			133.58			25.11				
1012		12			135 73			27.26				
1014		14			137.90			29.43				
1616		16			138.80			30.33		,		
•		18			141.79			33.32				
1020	20_	20			143.29			34.82				
1025	25	25			146.60			38.13				
1036	30	30			149.38			40.91				
1035	35	35			151.76			43.29	· · · · · · · · · · · · · · · · · · ·			
1040	40_	40			153.87			45.40				
104-5	45	45			155.74			47.27				
1050	50	50			157.43			48.96				
1100		60			160.29			51.82				
1110	19/	70			162.84			54.37				EB LEA IBS
1120		62.5			165.51			57.04	-			DAN
		91		-	166.73			58.26				
		101.5			168.80			60.33				
		122			17178			63.31				
		142			174.18			65.71				
		162		-	176.46	`		67.99				
		183			178.36			69.89				
-		202			179.89			71.42				
		222			181.16			72.61	<u> </u>			
<u>'</u>		242			182.67			74.20				
		262			184.06			75.59				
		280	f		184.67			76.20				
		301			186.07			77.60				
1521	21 5	332			187.68			79.21		<u> </u>		EÉ
1601	100	361			188.77	-		80.36		<u> </u>		
1631	30 1	392			189.79			81.32				<u> </u>
1702	1. °	422			196.79			82.52	,	<u> </u>	<u> </u>	/
1+05	1	1 / 1 / 2	 		110/71	 		07.77		 	 	

DEP. UTIL

WASHOE COUNTY

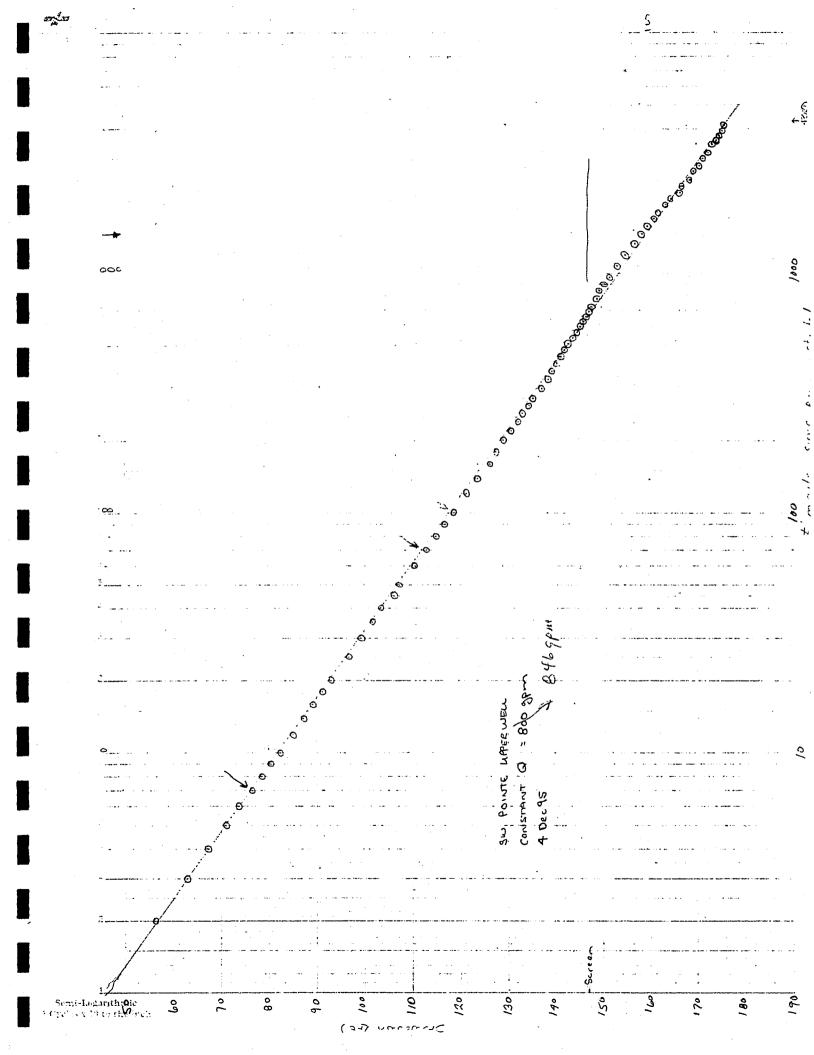
DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

WELLSW POINTE JOWE)
PUMPING OBSERVATION WELL RUMPING RECOVERY DATA
RUMPING RECOVERY DATA
DAGE 7 OF 7

	ROMPING/ RECOVERT DATA
TYPE of PUMPING TEST CONSTRATE C	PAGE Z OF Z
HOW Q MEASURED Drifice weir	M.P. for WL's TOC
HOW WL'S MEASURED elec. Sounder	DEPTH of PUMP/AIRLINE wet
PUMPED WELL NO. Upper well	% SUBMERGENCE: initial; pumping
RADIUS of PUMPED WELL	PUMP ON: date 4 Dec time 1000
DISTANCE from PUMPED WELL	PUMP OFF: date 7 Dec 95 time 1000

פוע	TANCE	trom F	OMPE	WELL			 	PUMP OFF	: date _	102	73 ti	me
t =		ME at t	-0		STATIC	WATER LEVEL	08.47			WAT PROD		COMMENTS
CLOCK TIME	ELAP:	SED TI	ME †'	t/t ¹	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or S'			Q	(NOTE ANY CHANGES IN OBSERVERS)
		452			A1.57			33.10			800	
		482			192.46			93 93				
		512			193.25			94.73				
		£42			194.15			8=.63				
		572			194.73			8621				
		602			195.44			86 27				
		632			\G'a.9D			37.5%				
<u> </u>		3,5			196.57			33.10				
		692			197.00			33 52				
		72.5			197-			39.24				
		775			193.42			80 05				
		B35			199			ფე <u>.</u> გ4 .				
L		900			199.03			01.51				
		960			200:52			92.15				
		1030		,	£ov.€ª			-13.12				
		1200			202 63			94.21				
		1320			203.33			2541				
		1440			276 75			د و،				
		ಕೊಂಡ			200 Dig			n., .				
		1630			205,78			67				
		1800			206 43			97.96				
6,00		1920			207,22			9875				
රික		2040	_		207,80			99.33				
2200	0/36	2160			208.20			99.73				
0020	10/38	2300			208,43			100,00				
0240	40 40	2440			209.20			100.73				
0600	0 44	2640			209.57			101.10				
0900	47	2820			209.85			101.38				
1260	50	3000			210.10			101.63				
1500		3180			210.39			10192				DA J
1700		<i>33∞</i> ∪			210.55			102.08				
1915		3435			211.08			102.61]	
2200		3600			211.45			102.98	l			EE
0100		3780			211.75			103.28]		
0400		3960			212.06			103.59				
0700		4140			212.49			104.02				
1000		4320			213.06			104.59				
<u> </u>												
			•	ļ .								
				<u> </u>				7	ļ		Į	

UTIL - 08


WASHOE COUNTY

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION John M. Collins, Chief Sanitary Engineer

POST OFFICE BOX 11130 RENO, NEVADA 89520 PHONE: (702) 785-4743

JPPER WAL DEC PLNy " (DATE_ PAGE OF PAGES UPPEK OWER PRODUCTION WELL PROJECT. MONITORNO WELL STATIC: 100.47 STATIC = 220.70 \$ 2 / s COMMENTS READING Ś READING 452 1411. 82.13 220.79 285 0.00 192.46 482 88.99 690 1.5% 11 ~ 220.85 222, 30 193.25 COLLECTION FROM 84.78 365 EIZ · : 374 95.68 542 194.15 6" WIPTLE MP = -0.48 41_1_1_ D 2.5 C. c. 86.31 194.78 572 221.27 220.79 320 pm 195.44 602 86.97 221.30 220.82 12/6/95 196.00 87 53 632 220.85 221.33 0315 662 196.57 BB. 15 220.84 @ OKIVINEL MP EE 0800 2760 o top of theaded hippie 692 197.69 38.62 221.307 3510 -15 801 20 动つ [7] 220.82 195, 1-1 775 30,0-835 92 64 199.11 acc 199.98 21.51 92.15 768 200.62 93.12: 201159 : 211.55 202.168 94.21 200 203.88 95.41 1320 monitor well 204.63 96.16 1440 top of z" cas :: 7 211.55 205.23 96.76 1850 12/6 560 3410 211.35 205.78 3515 (1) 1680 97.31 203517 date time said 5gal/7min sahd 12/6 2000 0 0.75 2100 0160 1.0

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

WELL SW Points	upperwell
PUMPING / OBSERVA PUMPING RECOVER	TION WELL
PUMPING RECOVER	Y DATA
DAGE I OF	

TYPE of PUMPING TEST Constat Q	PAGE _ OF Z
HOW Q MEASURED Orifice Dein	
HOW WL'S MEASURED <u>flecture</u> Sounder	DEPTH of PUMP/AIRLINE wrt
PUMPED WELL NO.	. % SUBMERGENCE: initial; pumping
RADIUS of PUMPED WELL	PUMP ON: date & Dec 95 time 10:00 Am
DISTANCE from PUMPED WELL	PUMP OFF: date 7 Dec 95 time 10:00 Am

	TII	ME			١	WATER LEVE	L DATA		WAT	ER	COMMENTS
t= at t'=0						113.27	PROD		COMMENTS		
LOCK TIME	ELAPS mins hrs	SED TIN	ME t'	t/t¹	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or S'		Q	(NOTE ANY CHANGES II OBSERVERS)
0.00	72	4320	٥		289.96	Sand 2 Acc		176,69			
		4321	_1_	4321	217.96			104.69			
		4372	r	2161	217.89			104.62			
		4323	3	1441	213.49			100.22			
		4324	4	1081	208.57			95,30			
		4325	5	865	206.33			93.06			
		4324	6	721	203.74			90.47			
		4321	7	618	201.37			88.10			
		4::3	В	541	199.20			85.93			
		4327	9	481	197.17			83.90			
		4330	10	433	195.43			82,16			
			12	341	192.30			79.03			
			14	310	189.69			76.42			
			16	271	187.42			74.15			
			1B	241	185,48			72.21			
		4340	20	217	183.80			70.53			
		<u> </u>	25	174	180.05			66.78			
		4350	30	145	176.92			63.65			
		10.5	35	124	174.38			ااناها			
		4360	40	109	172.33			59.06			
			45	97	170.26			56.99			
		4370	50	87	163.61			55.04			
		4375		80	167.08			53.81			
		4380		73	165.69			52.42			
		4371	71	62	162.94			49.67			
		4400		55	161.08			47.81			
		4410		49	159.19			4592			
		4420		44	157.54			44.27			
		4440	1	37	154.68		1	41.41			•
		4473		31	152.00			3873			
		4390		27	150.35			37.08			
		4500		25	149.25			35,98			
		4530		22	146.31			33.04		† · · · · ·	
		4560	1	19	144.35		<u> </u>	31.08			
		4590		17	H2.73		1	29.46			
5:00∑6W		4620	L	15.4				28.18		1	
3:40P		4660		3.7	138.96		-	25.69			
30P		4710		12.1		1	 	24.64		T	
	_				13(.71	1	<u> </u>	1		 	
2100		(130	000	1.6	12211		 	17.91		 	

WELL SW POINT UPTER WELL

UTI	LITY D	IVISIO	N			PUMPING	TEST	DATA	•			ECOVERY DATA	
th TYF	E of PL	JMPING				2 Recovery						OF	
HOV	V Q ME	ASURE	D _					M.P. for W	/୮, a <u>၂</u> ০୯	STILL	WELL	– elev. ———	
								DEPTH of PUMP/AIRLINE wrt					
PUN	APED W	ELL N	10					% SUBMERGENCE: initial; pumpling					
								PUMP ON: date 12/4/45 time 1000 PUMP OFF: date 12/7/45 time 1000					
DIS	TANCE	from P	UMPED	WELL				PUMP OFF	: date _	2/+/	95 ti	ne	
TIME WATER LEVEL DATA t = 4320 at t'=0 STATIC WATER LEVEL 113.27										WAT PROD		COMMENTS	
CLOCK	ELAPS mins hrs	ED TI	7	t/t1		CONVERSIONS CORRECTIONS	WATER	S or (S)			Q	(NOTE ANY CHANGES IN OBSERVERS)	
07/5					123.94	CORRECTIONS		10.67				ODOLITY CITO /	
1040	40 24	5373	1490	2 9	122.59			9.32					
1515			1755		121.61			7.74				חפ	
915					116.71	n/8		3.44	•			nw	
''''		• • • •										, , , , , ,	
									!				
							-						
				·									
													
													
<u> </u>													
				i									
													
				1				1					
								<u> </u>					
							1						
					1								
				 					1				
				1	1								
—		1	 	†	<u> </u>			1					
 	 	\vdash	1	 	1				1				
		1	<u> </u>		 			1					
-	/	+	 	†				1					
	/_	 	 	 	 	 	 	+	+	 	 		

DEPARTMENT OF PUBLIC WORKS

WELL SOUTHWEST POINT UPPER MONITI	ארי אף
PUMPING /OBSERVATION WELD	UZU.
PUMPING RECOVERY DATA	
DAGE OF 7	

ч	· · · · · · · · · · · · · · · · · · ·		PUMPING RECOVERY DATA
ጟ	TYPE of PUMPING TEST _	CONSTANT Q RECOVERY TEST	PAGE _ OF Z
_	HOW Q MEASURED		- M.P. for WL's TOP OF CASINL elev.
	HOW WL's MEASURED _	ACTAT SOUNDER	DEPTH of PUMP/AIRLINE wrt
	PUMPED WELL NO		_ % SUBMERGENCE: initial; pumping
	RADIUS of PUMPED WELL		PUMP ON: date 12/4/96 time 1000
	DISTANCE from PUMPED	WELL	PUMP OFF: date 12/7/95 time 1000

	TI	ME .	213.	06'		NATER LEVE			WAT		COMMENTS
<u>† =</u>	4320	at t	=0		STATIC	WATER LEVEL			PROD	UCT.	OOMINICIALS
CLOCK TIME	ELAPS mins hrs	SED TII	ME t	t/t¹	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	S or (S)		Q	(NOTE ANY CHANGES IN OBSERVERS)
1001		4-321	1	+321	208.25			99.78			
		4322	2	2161	203.19			94.72	·		
		4323	ß	1441	200.20			91.73			•
		4324	4	1081	197.77			89.30			
		4325	5	865	195.64			87.17			
		4326	6	721	193.66			85.19			
		4327	7	618	192.00			83.53			
		4328	8	541	190.52			82.05			
		4329	a-	481	189.14	,		80.67			
1010		4330	١٥	433	187.83			79.36			
1012		4332	12	361	185.50			77.03			
1014		4334	14	310	183.44			74.97			
		4336	16	271	181.63	·		73.16			
		4338	18	241	179.98	,		71.51			
1620		4340	20	217	178.50			70.03			
1025		4345	25	174	175. 28			66.81			
1030		4350	36	145	172.62			64.15	<u> </u>		
		4355	35	124	170.28			61.81			
-		4360	40	109	168.27			59.80			•
		4365	45	97	166.42			57.95			
		4370	50	87	164.83			56.36			
		4375	55	80	163.65		-	55.18			
1100		4380	60	73	161.97			53.50			······································
		4392	72	61	159.16			50.69			<u></u>
		4401	81	54	15723			48.76			· · · · · · · · · · · · · · · · · · ·
		4411	91	48	155.43			4696			
			101	44	153.83			45.36			
			121	37	151.03			42.56			
		4474		31	14836			39.89			
		4481		28	146.71			38.24			
		4501		25	145.33		<u> </u>	36.91			
		4531		21.5	142.55			34.08			
			241	18.7	140.65			32.18	<u> </u>		
			27/	16.9	138.98			30.51			
1501		4621		15.4	137.66			29.19			,
1541		4661	341	13.7	135 94			27.47	1		-
17 11		4711	391	11.9	134,13		<u> </u>	25.66		,	
2100		7480		7.55			<u> </u>	18.75			· · · · · · · · · · · · · · · · · · ·
2000		5160		6,14				16.06			
2000		و مارد	0.10	~,17	147/23			161040	+		

DEPARTMENT OF PUBLIC WORKS UTILITY DIVISION

PUMPING TEST DATA

Some in the second

WELL UPPER MONITORING WELL
PUMPING OBSERVATION WELD
PUMPING RECOVERY DATA
PAGE Z OF Z

ļ	TYPE of PUMPING TEST CONSTANT Q RECOVERY	PAGE Z OF Z
_	HOW Q MEASURED	M.P. for WL's TOP OF CASINLE elev.
	HOW WL'S MEASURED ACTAT SOUNDER	DEPTH of PUMP/AIRLINE wrt
	PUMPED WELL NO. SW POINT UPPER WELL	% SUBMERGENCE: initial; pumping
	RADIUS of PUMPED WELL	PUMP ON: date 12/4/95 time 1000
	DISTANCE from PUMPED WELL	PUMP OFF: date 12/7/45 time 1000

				WELL				PUMP OFF	: date _	12/7	/95 ti	me <u>1000</u>
t = CLOCK TIME	T1 4320	ME at t	= O		STATIC	WATER LEVEL	108.47		٠.	WAT PROD	ER OUCT.	COMMENTS
CLOCK TIME	ELAP:	SED TII	ME t'	t/t¹	READING	CONVERSIONS CORRECTIONS	WATER LEVEL	s or s			Q	(NOTE ANY CHANGES IN OBSERVERS)
0715		5595	1275	4.4	120.10	12/8		11.63				
1045	31 24	5805	1475	3.9				10.24				
1515					117.17	12/8		8.70				AD
0915		7155	2835	2.5	113.27	12/9		4.8				MW
									·			
												·
						•						
										Ī		
						-						
							-					
										 	 -	
<u> </u>				<u> </u>	<u> </u>		<u> </u>			· · · · ·	_	
												·
			<u> </u>		-	- · · · · · · · · · · · · · · · · · · ·						
											 	
 		-								<u> </u>	 	
 -				 			-					
			<u> </u>	-	 							
-		_	 		 					-	 	
<u> </u>		 •	<u> </u>		 					 	ļ <u> </u>	
-		 	<u> </u>	 	ļ				<u> </u>	<u> </u>	_	
<u></u>			ļ	-						ļ	<u> </u>	
<u> </u>	//		 	-	<u> </u>					<u> </u>	ļ	
ļ	//	ļ	<u> </u>	ļ								
<u> </u>	/ /	<u> </u>	ļ					<u> </u>				
		<u> </u>	ļ ·		ļ					<u> </u>	ļ	
		<u> </u>										
		· ·		ļ								
		L	ŀ				,				1	

.0 SW POWTE
PUMPING WELL
RECOVERY DATA

. CONSTANT Q + BOORD-

7.7

SCHEDULE OF ITEMS AND PRICES

ITEM NO.	APPROX. QUANTITY	DESCRIPTION OF ITEM WITH UNIT UNIT PRICE WRITTEN IN WORDS	UNIT PRICE	TOTAL PRICE
		PRODUCTION WELL		
1.	1 Ea.	Mobilization and Demobilization including all materials, labor, equipment for completion, testing and site rehabilitation for one production well as described in Specifications for the lump sum price of <u>Six Thousand and no cents</u>	\$ 6,000.00/LS	\$ 6,000.00
2.	24 hrs.	Standby time at Owner's request approx. 24 hrs at One Hundred Twenty and no cents per hour.	\$ 120.00/HR	\$ 2,880.00
3.	100 ft.	Drill 24 inch minimum dia- meter borehole to a depth of 100 feet atone Hundred and no cents per lineal foot.	\$ 100.00/FT	\$10,000.00
4.	101 ft.	Provide and install 101 feet of nominal 20-inch diameter steel conductor pipe to a depth of 100 feet at Fifty Three and no cents per lineal foot.	\$53.00/FT	\$ 5,353.00 /
5.	100 ft.	Provide and install 100 feet sanitary seal at lump sum of wenty Five Thousand and no cents.	\$ 2.500.00/LS	\$ 2,500.00
6.	600 ft.	Drill nominal 7-inch diameter pilot borehole from 100 to approximately 700 feet at Fifteen and no cents per lineal foot.	\$ 15.00/FT	\$9,000.00

ITEM NO.	APPROX. QUANTITY	DESCRIPTION OF ITEM WITH UNIT UNIT PRICE WRITTEN IN WORDS	UNIT PRICE	TOTAL PRICE
7.	600 ft.	Drill 16-inch minimum diameter production borehole from 100 to approximately 700 feet at Thirty and no cents per lineal foot.	\$30.00/FT	\$18,000.00
8.	360 Feet	Furnish & install 10-inch dia. wire wrap well screen, approx. 360 feet at Thirty dollars and Fifty cents		
9.	342 ft.	per lineal ft. Furnish and install 10-inch diameter blank production casing, approximately 342 feet at Seventeen dollars and Fifty cents per lineal foot.	\$30.50/FT \$17.50/FT	\$10,980.00 \$5,985.00
10.	35 Yards ³	Furnish & install design gravel pack, estimated 35 yds at Two Hundred and no cents per yd. 3	\$200.00/YD	\$7,000.00
11.	40 Hours	Development by jetting, estimated at 40 hours at Two Hundred Forty and no cents per hour.	\$240.00/HR	\$9,600.00
12.	40 Hours	Development by pumping, one estimated at 40 hours at Hundred Sixty and no cents hour.	\$160.00/HR	\$6,400.00
13.	80 Hours	Furnish, install, operate & remove necessary equipment for test pumping, estimated at One Hundred Sixty and no cents per hour.	\$160.00/HR	\$12,800.00
14.	1 Each	Well disinfection & capping at the lump sum price of Four Hundred and no cents	\$400.00/LS	\$400.00
15.	1 Each	Video Camera Log at the lump sum price of		•

ITEM NO.	APPROX. QUANTITY	DESCRIPTION OF ITEM WITH UNIT UNIT PRICE WRITTEN IN WORDS	UNIT PRICE	TOTAL PRICE
		EXPLORATION WELL		
16.	1 Ea.	Mobilization and Demobilization including all materials, labor, equipment for completion and site rehabilitation for one test well as described in Specifications for the lump sum		
	·	price of Four Thousand and no cents	\$4,000.00/LS	\$4,000.00
17.	700 ft.	Drill nominal 8-inch diameter pilot hole to a depth of approximately 700 feet at		
•		Twenty and no centsper lineal foot.	\$20.00/FT	\$14,000.00
18.	1 ea.	Provide a geophysical log of borehole at lump sum price of Two Thousand and no cents		
		•	\$2,000.00/LS	\$2,000.00
19.	460 ft.	Provide and install 4 inch dia- meter slotted steel casing, est- imated at 460 feet at		
		Eighteen and no cents per linear foot.	\$18.00/FT	\$8,280.00 /
20.	240 ft.	Provide and install 4 inch dia- meter blank steel casing, esti- mated at 240 feet at Seven		
		and fifty cents per linear foot.	\$7.50/FT	\$1,800.00 /
21.	11 yrds.	Furnish and install gravel pack estimated at 11 yards at	\$200.00/YD	\$2,200.00
22.	1 ea.	Furnish and install 50 foot sanitary seal at lump sum price of Twenty Five Hundred and no cents.	\$2,500.00/LS	\$2,500.00

ITEM NO.	APPROX. QUANTITY	DESCRIPTION OF ITEM WITH UNIT UNIT PRICE WRITTEN IN WORDS	UNIT PRICE	TOTAL PRICE
23.	6 hrs.	Furnish, install, complete and remove necessary equipment for air lift development estimated at six hours at Two Hundred Forty and no cents per hour.	\$240.00/HR	800 \$1,440.00 /
24.	1 each	Furnish and install vandal resistant, 6-inch wellhead protector and locking cap at the lump sum price of	\$500.00/LS	\$500.00 /
		PROPOSAL- BASE BID		\$144,618.00
	BASE BID	WRITTEN IN WORDS		
	One Hundre	d Forty Four Thousand, Six Hundred Eighte	en and No Cents	
		develop	blank N	
	Expl.	develop Nell 36,720 + 360 + () + 75	
		grave (

ITEM NO.	APPROX. QUANTITY	DESCRIPTION OF ITEM WITH UNIT UNIT PRICE WRITTEN IN WORDS	UNIT PRICE	TOTAL PRICE
		OPTIONAL PRODUCTION WELL		
1.	1 Ea.	Mobilization and Demobilization including all materials, labor, equipment for completion, testing and site rehabilitation for one optional production well as described in Specifications for the lump sum price of Three Thousand and no cents	\$3,000.00/LS	\$3,000.
2.	100 ft.	Drill 26-inch minimum diameter borehole to a depth of 100 feet at One Hundred Five and no cents per lineal foot.	\$105.00/FT	\$10,500.
3.	101 ft.	Provide and install 101 feet of nominal 22-inch diameter steel conductor pipe to a depth of 100 feet at <u>Fifty Eight and no cents</u> per lineal foot.	\$58.00/FT	\$5,858 .
4.	100 ft.	Provide and install 100 feet sanitary seal at lump sum of Three Thousand and no cents">Three Thousand and no cents	\$3,000.00/LS	<u>\$3,000.</u>
5.	600 ft.	Drill 18-inch minimum diameter production borehole from 100 to approximately 700 feet at Forty and no cents		
		per lineal foot.	\$40.00/FT	\$24,000.
6.	/320 ft.	Furnish & install 12-inch diameter wire wrap well screen, approx. 320 feet at Thirty five and		-3600
		Fifty centsper lineal ft.	\$35.50/FT	\$11,360.

ITEM NO.	APPROX. QUANTITY	DESCRIPTION OF ITEM WITH UNIT UNIT PRICE WRITTEN IN WORDS	UNIT PRICE	TOTAL PRICE
7.	382 ft.	diameter blank production		
	290	casing, approximately 382 feet at <u>Twenty and no cents</u>		-1840
	/	per lineal foot.	\$20.00/FT	\$7,640.00
8.	35 Yards ³	Furnish & install design gravel pack, estimated 35 yds at		
	2,6	Two Hundred and no cents per yd. 3	\$200.00/YD	\$7,000.00
9.	40 Hours	Development by jetting, estimated at 40 hours at Two Hundred Forty and no cents		
	,	per hour.	\$240.00/HR	\$9,600.00
10.	40 Hours	Development by pumping, esti- mated at 40 hours at One Hundred Sixty and no cents per hour.	<u>\$160.00/</u> HR	\$6,400.00
11.	80 Hours	Furnish, install, operate & remove necessary equipment for test pumping, estimated at 80 hrs at One Hundred Sixty	· · · · · · · · · · · · · · · · · · ·	
		and no cents per hour.	\$160.00/HR	\$12,800.00
12.	1 Each	Well disinfection & capping at the lump sum price of		
		Four Hundred and no cents	\$400.00/LS	\$400.00
13.	1 Each	Video Camera Log at the lump sum price of One Thousand and		
		no cents	\$1,000.00/LS	\$1,000.00 /

Contract I	Document	s and	Speci	lfica	tions	
Southwest	Pointe	Produc	ction	and	Exploration	Wells

	\$101,558.00 /02,558.00
· · · · · · · · · · · · · · · · · · ·	102,558.00
One Hundred One Thousand, Five Hundred Fifty Eight and No Cents	
TOTAL BID SUMMARY	
BID WILL BE AWARDED BASED ON THE LOWEST TOTAL BID.	
BASE BID \$144,618.00	
OPTIONAL BID \$101,558.00	
TOTAL BID \$246.176.00	***
TOTAL BID WRITTEN IN WORDS 247, 176	•
Two Hundred Forty Six Thousand, One Hundred Seventy Six and No Cents	· ·

SPECIAL CONDITIONS

1. GENERAL

This section of the Specifications covers the Special Conditions applicable to the project, which are not covered by the General Provisions, or the Well Specifications.

2. LIQUIDATED DAMAGES

Should the Contractor fail to complete the work or any part thereof in the time agreed upon in the contract, the Contractor will be subject to liquidated damages of up to \$300 per calendar day for each day after the time has expired. In addition to other possible damages the Owner is authorized to use liquidated damages to pay additional costs for Resident Engineering and/or Inspection and such other costs as are incurred as a result of the delay in completion of this project within the specified time limit.

3. COPIES OF DOCUMENTS

The Owner will furnish to the Contractor up to six (6) copies of the Specifications and Drawings as are reasonably necessary for the execution of the work.

4. WORKING HOURS

The Contractor may, at his discretion, extend working hours to meet the requirements of the job. The Contractor must meet all State and Local requirements for noise levels and any other State or Local ordinance that may affect the performance of the work.

5. AIR QUALITY-OPERATING PERMITS

Before starting construction, the Contractor must submit and receive approval on a plan for controlling dust from excavation and stockpiling operations at:

Washoe County District Health Department 1001 East Ninth Street P.O. Box 11130 Reno, Nevada 89520

6. SANITARY FACILITIES

The Contractor shall provide sanitary facilities at each active job site.

7. WARNING SIGNS AND BARRICADES

The Contractor shall provide adequate barriers, warning signs, lights, temporary signals, and other protective devices. All warning devices shall conform with the Manual on Uniform Traffic Control Devices for Streets and Highways published by the U.S. Department of Transportation Federal Highway Administration, current edition.

8. INTERFERING STRUCTURES AND UTILITIES

The Contractor shall exercise all possible caution to prevent damage to existing structures and utilities whether above ground or underground. Notify Underground Service Alert at 1-800-227-2600 at least two working days prior to digging. The Contractor shall notify all utility offices concerned at least 48 hours in advance of construction operations in which a utility's facilities may be involved. This shall include, but not be limited to, irrigation, water, telephone, electric, oil, gas, and television sources.

It shall be the responsibility of the Contractor to locate and expose all existing underground structures and utilities in advance of the trench excavation. Any structure or utilities damaged by the work shall be repaired or replaced in a condition equal to or better than the condition prior to the damage. Such repair or replacement shall be accomplished at the Contractor's expense without additional compensation from the Owner.

The Contractor shall remove and replace such small miscellaneous structures as drain pipe, culverts, mailboxes, and sign posts at his own expense without additional compensation from the Owner. The Contractor shall replace these structures in a condition as good as or better than their original conditions.

If interfering power poles, telephone poles, guy wires, or anchors are encountered, the Contractor shall notify the Engineer at least seven (7) days in advance of construction to permit arrangements with the utility company for protection or relocation of the structure. Such structures will not be considered to interfere unless they are within five (5) feet of the trench center line.

If the Contractor encounters existing structures which will prevent the construction of the pipeline which are not properly shown on the Plans, he shall notify the Engineer before continuing with the construction in order that the Engineer may make such field revisions as necessary to avoid conflict with the existing

structures. If the Contractor shall fail to so notify the Engineer when an existing structure is encountered, but shall proceed with the construction despite this interference, he shall do so at his own risk. In particular, when the location of the new construction as shown on the Plans, will prohibit the restoration of existing structures to their original conditions, he shall notify the Engineer so a field relocation may be made to avoid the conflict.

9. CONTRACTOR'S RESPONSIBILITY FOR UTILITY PROPERTIES AND SERVICE

At points where the contractor's operations are adjacent to or cross properties of railway, telegraph, telephone, irrigation or canal, power, oil, gas, water and petroleum companies or are adjacent to other property (damage to which might result in considerable expense, loss, and inconvenience) no work shall be started until all arrangements necessary for the protection thereof have been made. It shall be the Contractor's responsibility to protect from damage all power poles.

The Contractor shall be solely and directly responsible to the owners and operators of such properties for any damage, injury, expense, loss, inconvenience, delay, suits, actions, or claims of any character brought because of any injuries or damage which might result from the carrying out of the work to be done under the Contract.

In the event of interruption of either domestic or irrigation water or to other utility services as a result of accidental breakage or as a result of being exposed or unsupported, the Contractor shall promptly notify the proper authority. He shall cooperate with the said authority in restoration of service as promptly as possible and shall bear all costs or repairs. In no case shall interruption of any water or utility service be allowed to exist outside working hours unless prior approval is received.

Neither the Owner nor its officers or agents shall be responsible for damages to the Contractor as a result of the existence of utility lines not shown on the Plans.

10. CLOSING STREETS AND DRIVEWAYS

The Contractor shall obey all rules, laws, ordinances, and regulations of the state, county, and city authorities as to the closing or the barricading of public roads and streets.

The work shall be carried out so as to cause a minimum of

dislocation of normal commercial procedures. Traffic must be kept open on those roads and streets where detour is possible. The Contractor shall, without further or other order, provide, erect, and maintain at all times during the progress of temporary suspension of the work, suitable barricades, fences, signs or other adequate protection and shall provide, keep, and maintain such danger lights, signals, and flagmen as necessary or ordered by the Engineer to insure the safety of the public as well as those engaged in connection with the work. All barricades and obstructions shall be protected by signal lights which shall be kept burning from one hour before sunset until one hour after sunrise and at such other times as vision is obscured by fog, smoke, or dust.

11. PUBLIC SAFETY AND ACCESS

During all construction operations, the Contractor shall construct and maintain such facilities as may be required to provide access of all property owners to their property. No person shall be cut off from access to his residence or place of business for a period exceeding eight (8) hours, unless the Contractor has made a special arrangement with the affected persons.

12. WATER AND POWER

The contractor shall be responsible for furnishing all required utilities for construction purposes, including but not limited to, water, electrical, power, gas, telephone, and sanitary facilities. The contractor shall pay all costs involved in securing and using such utilities.

13. BURNING OF VEGETATION

No burning of vegetation will be allowed.

WELL SPECIFICATIONS

Scope of Work, Mobilization and Demobilization

The work to be performed includes the furnishing of all labor, materials, transportation, tools, supplies, plant equipment and appurtenances, unless hereinafter specifically excepted, necessary to the complete and satisfactory construction, development and testing of: a 10-inch diameter, steel cased, gravel envelope, production well approximately 700 feet deep; a 4-inch diameter, steel cased, gravel enveloped exploration well approximately 700 feet deep; and, at the Owner's option, a 12 inch diameter, steel cased, gravel enveloped, production well approximately 700 feet deep.

Payment for Mobilization and Demobilization will be as follows:

When 10% of the total original contract amount is earned from other bid items, 100% of the amount bid for mobilization, or 10% of the total original contract amount, whichever is the least will be paid.

Upon completion of all work on the contract, payment of any amount bid for mobilization in excess of 10% of the total original contract amount will be paid. Demobilization shall be considered incidental to mobilization bid item.

2. Contractor's Qualifications

The Contractor shall have been engaged in the business of construction hydraulic rotary-drilled and reverse rotary drilled gravel envelope wells of diameter, depth, and capacity equivalent to the proposed wells for a period of not less than 5-years. The Owner may request the Contractor supply a reference list of at least three clients for which the Contractor has completed similar wells.

The Contractor shall employ only competent workmen for the execution of his work and all such work shall be performed under the direct supervision of and experienced, licensed well driller satisfactory to the Owner.

3. Permits, Certificates, Laws and Ordinances

The Contractor shall, at his own expense, procure all permits, certificates and licenses required of him by law of the execution of his work. He shall comply with all local, County and State regulations necessary for the performance of his work.

4. Preconstruction Conference

Before starting the work, a conference will be held to review scheduling of work to establish procedures for handling shop drawings and other submissions and for processing applications for payment, and to establish a working understanding between the parties as to the project. Present at the conference will be the Engineer, Contractor and his Superintendent, and representatives of the Washoe County Utility Division. The Contractor shall provide at the preconstruction conference a list showing the names and responsibilities of personnel assigned to complete the project.

5. Daily Logs

Drillers Logs showing daily progress are to be kept at the job site and marked daily as the work proceeds. The logs shall be kept available for inspection by the Engineer at all times. At the completion of the work and before final payment, these logs shall be signed by the Contractor and returned to the Engineer.

6. Location, Access and Drilling Conditions

The wells are located in the South Truckee Meadows in Sections 23 and 24 of T18N R19E (see attached map). The site is open, sagebrush covered land with dirt road access. A Drillers Log from a test well (site of the production well) drilled in 1992 to a depth of 590 feet is attached. Please note that loss circulation zones existed in this test well at 177-180 and 420-460 feet. Competent volcanic rock was encountered at 580 feet. The Contractor shall familiarize himself with surface and subsurface conditions within the drill site prior to bidding.

7. Equipment and Operating Requirements

The Contractor has the option to drill with the flood reverse method or the mud rotary method. The equipment to be furnished shall be approved by the Owner and have excess capacity to construct the wells as specified herein. For the mud rotary drilling method, the following accessory equipment shall include:

- a. Mud pit with operational desanders and shale-shaker. Pit shall have a volume capacity of at least 3X maximum anticipated borehole volume (700 feet, 16-inch diameter borehole: volume = approximately 22,000 gallons).
- b. Mud pressure gage.
- c. Approved equipment for measuring mud properties.
- d. Weight indicator.
- e. Drill collars for added weight during early stages of drilling.

8. Well Construction

a. Boreholes - The boreholes for the wells shall be drilled to the depth specified by the Owner. The production borehole shall be a minimum diameter of 16 inches with an estimated depth of 700 feet. The borehole for the exploration well shall be a minimum of 8 inches in diameter to an estimated depth of 700 feet as directed by the owner. If the optional production well is drilled, the borehole shall be a minimum diameter of 18 inches to an estimated depth of 700 feet.

The borehole for conductor pipe shall be a minimum diameter of 24 inches to a depth of 100 feet for the production well and a minimum diameter of 26 inches to a depth of 100 feet for the optional well.

Payment for the boreholes shall be based on a per foot basis, as outlined in the "SCHEDULE OF ITEMS AND PRICES" for the total footage drilled at the request of the Engineer. No payment shall be made for overdrilling as desired by the Contractor.

Formation samples shall be taken at 10-foot intervals or at each change in formation. Samples shall be stored and clearly labeled in Ziploc freezer bags or approved equal. The Contractor shall have a grain size analysis performed on a minimum of two formation samples selected by the Owner. The results of the analyses, including recommendations for slot size openings, shall be delivered to the Owner for review within 72 hours of sample collection.

b. Drilling Fluid - When it becomes necessary to add clays or

chemicals to the drilling fluid, it must be borne in mind that it is desirable to maintain a mud system containing a minimum of clay and fine sand and to deposit a thin, easily removable filter cake on the face of the borehole. If there should be a conflict between the mud requirements for ease in drilling and the mud requirements for protection of the aquifer, then the ruling requirements shall be those for aquifer protection.

In the event it is the opinion of the Owner that drilling fluid properties are not being maintained in the best interest of aquifer protection, the Owner may require the Contractor to obtain the services of a qualified mud engineer. The Contractor shall be responsible for any payment required for the services of the mud engineer. The mud engineer shall have the responsibility to maintain mud and loss-circulation properties in a manner meeting the goals of aquifer protection.

The Contractor shall monitor and maintain the fluid properties as outlined by the mud engineer. In the event the Contractor cannot attain these properties, the mud shall be replaced at no additional cost to the Owner.

- C. Geophysical Log The Contractor shall provide a geophysical log of the monitor well borehole from a reputable Well Logging Services Contractor such as WELENCO, GEO-HYDRO-DATA or approved equal. The logs shall consist of Point, Long and Short Normal Resistivity and Spontaneous Potential. The Contractor shall make every reasonable effort to ensure logging of the entire borehole. Payment for the geophysical logging shall be at the price quoted in the "SCHEDULE OF ITEMS AND PRICES".
- d. Conductor and Well Casing All production casing shall be of new, first quality materials and free of defects in workmanship and handling. No reject, subgrade or limited-use pipe is acceptable. Production and conductor casing shall be black steel pipe, welded or seamless. Either fabricated or mill-type pipe is acceptable. Steel for fabricated pipe shall conform to ASTM Standard A 283 Grade B or better. Where applicable, fabricated and mill pipe shall conform to ASTM Standard A-53 or A-120, or API Standard 5A or 5L. For the production well, the outside diameter shall be 10 3/4-inches with a minimum wall thickness of 0.25 inches. For the production well conductor, the outside diameter shall be 20 inches with a minimum wall thickness of 0.375 inches. For the exploration well, the outside diameter shall be 4.50 inches

with a minimum wall thickness of 0.188 inches. If the optional well is constructed, the conductor pipe shall have an outside diameter of 22 inches with a minimum wall thickness of 0.375 inches and the well casing shall have an outside diameter of 12.75 inches with a minimum wall thickness of 0.250 inches. The Contractor shall furnish the Owner with mill certification from the casing manufacturer prior to installation of the casing.

Payment for production well casing shall be at the per foot price for casing installed at the request and approval of the Engineer as stated under "SCHEDULE OF ITEMS AND PRICES".

e. Well Screen - Well screen shall be of the continuous slot design, wire wound Hi Cap (TM) as manufactured by UOP Johnson, Inc., or approved equal. Screen shall be of new, first quality material, free of defects in workmanship or handling. The screen shall be constructed of low carbon steel and have a wire size of sufficient strength for a depth setting 700 feet. The production well screen shall have an outside diameter of 10 3/4-inches. A blank casing sump, ten (10) feet in length shall be added to the well screen. The bottom of the sump shall be covered with a steel rounded bullnose plug fabricated of the same material as the 10 3/4-inch diameter production casing. If the optional well is constructed, the well screen shall have an outside diameter of 12.750 inchesand meet similar construction standards as the 10 inch well. A 10 foot sump and cover will also be installed. The exploration well shall have, at a minimum, four slots/ft of perforations at 3 inches x 3/32 inches and end cap.

Final selection of the well screen slot size will be determined from the sieve analysis and recommendations. Final selection shall be specified to the Contractor within 24 hours of receiving the sieve analysis. For bid purposes, the Contractor shall anticipate a "design" size of 80 slot for both production wells.

Payment for Well Screen casing shall be at the per foot price for screen installed at the request and approval of the Engineer as stated under the "SCHEDULE OF ITEMS AND PRICES".

f. <u>Installation of Conductor Casing</u> - The conductor casing borehole shall be a minimum 24 inch diameter (26 inch diameter for the optional well) and drilled to a depth of 100 feet.

The conductor casing shall be equipped with centering guides, with the first ones located about 4 feet above the bottom of the casing and then approximately every 30 feet. The centering guides shall be approved by the geologist prior to installation. The top of the casing shall extend 1 foot above land surface. Payment for Conductor casing shall be at the per foot price for conductor installed at the request and approval of the Engineer as stated under the "SCHEDULE OF ITEMS AND PRICES".

- g. Installation of Grout Surface Seal The grout surface seal shall be implaced through the use of a tremmie pipe with positive displacement. The grout shall be composed of a thoroughly mixed, free of lumps and stones, cement grout. The grout shall consist of a mixture of 5.2 gallons of clean water mixed with each sack (94 lbs.) of Portland type C cement. The slurry mix shall produce a slurry weight of 15.6 lbs/gal. The cement, after placement, shall be allowed to set up for a period of not less than 36 hours, after which drilling may proceed. Stand by time will not be paid during this set up period. A reserve of at least fifty percent (50%) over the calculated volume of cement required shall be stocked on location to allow for volume differences due to washouts. Payment shall be at the lump sum prices quoted in the "SCHEDULE OF ITEMS AND PRICES".
- h. Casing and Screen Installation The borehole shall be drilled with diligence and without undue delays. The gravel must be at or near the project site so there will be no waiting on gravel once the casing has been installed. The reamed boreholes shall be drilled to a minimum diameter of 16 inches for the production well and 18 inches for the optional well.

Casing and screen shall be installed using methods approved by the Owner. The casing and screen shall be suspended above the bottom of the hole at a sufficient distance to insure that neither will be supported from the bottom. The suspended casing shall be firmly secured at the surface until gravel installation is complete.

The casing shall have centering guides approved by the Owner. Centering guides shall be installed at points specified by the Owner but in no case shall be more than fifty (50) feet apart.

Welders required for field assembly of well casing and screen shall be qualified in accordance with the latest revision of

the section titled, "Welding Procedures" of the AWA Standard Qualification Procedure. All sections shall be joined by a watertight continuous, full fillet weld.

g. Gravel - The gravel to be installed shall be composed of sound, durable, well-rounded particles containing no silt, clay, organic matter or deleterious materials. It shall be well-graded within limits as determined by the Owner, within two working days of receipt of grain size distribution curves from the Sieve Analysis. Gravel dumped on site shall be protected from contamination by covering with plastic sheeting or shall be delivered in protective bag containers. For bid purposes, Contractor shall anticipate a "design" gravel pack of "Chevreaux" 1/4 x 1/8 inch washed material or equivalent. Gravel for the monitor well shall be standard "pea" gravel, 1/4 x 1/8 inches.

Payment for gravel shall be at the per yard price for gravel installed under "SCHEDULE OF ITEMS AND PRICES". Contractor shall supply Engineer with gravel invoice, stating quantity of gravel delivered on site.

The contractor shall have the responsibility and shall determine when conditions with respect to drilling fluid and hole stability are satisfactory for gravel placement to begin without bridging. Placement of gravel shall be through a tremmie pipe installed to a depth as directed by the Owner.

Placement of gravel by end-dumping with a loader or shoveling directly into the hole will not be allowed. The Contractor shall be responsible for placing the gravel in the annulus without bridging. If the gravel bridges, the Contractor shall correct the problem with no damage to the well or drill a new well, complete, at his expense. If the Contractor chooses to drill a new well, he shall be responsible for all costs associated with properly abandoning the existing well. Bridging of gravel pack shall be assumed if gravel packing does not utilize at least 90% of the calculated annular space volume.

h. Exploration Well Sanitary Seal - The annular space between the borehole and the well casing shall be sealed in a manner by displacing drilling fluid from the top of the gravel pack to the ground surface through a tremmie pipe installed to a depth to within five (5) feet of the top of the gravel.

Payment for sanitary seal shall be at the lump sum price as stated in the "SCHEDULE OF ITEMS AND PRICES" Contractor shall provide invoice showing quantity of grout pumped into the annular space.

Seal shall be composed of a thoroughly mixed, free of lumps and stones, cement grout. Grout shall consist of a mixture of 5.2 gallons of clean water mixed with each sack (94 lbs) of Portland type C cement. The slurry mix shall produce a slurry weight of 15.6 lbs./gal. Slurry mix shall be run through a protective strainer before entering the tank from which the grout is pumped into the well. The seal shall be placed in one continuous operation once the process begins. After installation, the sanitary grout seal shall be left undisturbed for a minimum 24 hours. No standby time shall be paid during this period.

9. Development

a. <u>Jetting</u> - Initial development shall be by jetting. The Contractor shall provide an jetting tool approved by the Owner. The tool shall have horizontal nozzles so water or a mixture of air and water is directed directly into screen. The Contractor may suggest other methods of development, but must be approved by the Engineer before use. The compressor for jetting shall have a capacity to unload 700 feet of water and produce a minimum air volume of 400 cubic feet per minute. Contractor shall provide compressor specifications if requested by Owner.

Development by jetting shall begin at the top of the screen and shall move downward gradually to within five (5) feet of the bottom of the well. Once one complete pass of the well has been made, development by jetting shall continue at five (5) foot intervals, until it is the opinion of the Owner that the development is complete.

Payment shall be at the unit price per hour as described under "SCHEDULE OF ITEMS AND PRICES". Payment shall be for actual jetting time and shall not include setup or tripping in and out of well.

b. <u>Development Pumping</u> - The Contractor shall furnish, install, operate and remove a pump for developing the well. The pump shall have a capacity in excess of 500 gallons per minute (gpm) against a total head of 320 feet, with an anticipated

bowl setting of 325 feet. The pump shall not have a check valve at the bottom so water is allowed to free-fall back through the column pipe and pump when the pump is shut off.

The Contractor shall furnish and install discharge piping of sufficient size and length to conduct water to a point designated by the Owner. The discharge rate shall be measured using a properly constructed orifice weir. The weir dimensions shall include a 6-inch diameter pipe with two interchangeable orifice plates, one 3-inches in diameter and one 4-inches in diameter. The discharge piping shall also include an easily operable gate valve to control flow rates. All flow and flow rate monitoring equipment shall be approved by the Owner prior to installation.

The Contractor shall include with the pump installation, a one inch diameter PVC stilling well installed to a depth of five (5) feet above the pump intake. The PVC pipe shall be open at the bottom and shall provide easy access for measuring water levels during development and testing.

The initial pumping rate shall be restricted and as the water clears, the rate shall be gradually increased until the maximum rate is reached. The maximum rate will be determined by the Owner after consideration of the well drawdown and discharge characteristics. At periodic intervals, the pump shall be stopped and water in the pump column shall be allowed to surge back through the pump bowls and into the well. While pumping and surging, the Contractor shall periodically measure the gravel level in the gravel feed tube and shall add gravel if necessary. The Owner shall determine when development is complete.

Payment for development pumping shall be at the per hour rate as described under "SCHEDULE OF ITEMS AND PRICES". Payment shall be for actual pumping and surging and shall not include time for installing and removing pumping equipment.

10. Pumping Tests and Disinfection

Following development operations the Contractor shall perform a complete pumping test of the well. The test pumping equipment shall be a submersible pump with a capacity range between 200 and 500 gpm against a total head of 320 feet, with an anticipated pump

intake setting of 325 feet. The Contractor shall furnish and install discharge piping for the pumping unit, of sufficient size and length to conduct the water to a point designated by the Owner. Installation of necessary appurtenances such as orifice weir, gate valve and stilling well shall be approved by the Owner prior to initiation of testing for yield and drawdown. Appurtenances will be evaluated by the Owner based on correct installation, quality of equipment and ease of operation. The Contractor shall provide a 1/4-inch threaded tap into the discharge line to allow attachment of a Rossum Sand Tester to be provided by the Owner. The Owner shall operate the sand testing device.

The contractor shall provide a generator of sufficient capacity to run the pump. For bid purposes, the Contractor shall anticipate a "Wisper Watt" or "Aggreko", quiet running generator available through local generator rental agencies.

Test pumping shall be directed by the Owner. The anticipated pumping scenario to include, but not be limited to the following:

- 1) Step Test Pumping at four different rates ranging between 200 and 500 gpm. Each rate will be pumped for a minimum of 100 minutes. After completion of the step test the well shall be allowed to recover for a minimum of 12 hours before beginning the Constant Q test. Equipment installation for the Step test shall be installed and ready to operate prior to 10:00 a.m. If equipment is not ready by 10:00 a.m., the test will be delayed until 8:00 a.m. the following morning and no standby time will be paid for the overnight delay.
- 2) Constant Q Pumping at the design capacity + 15% or 500 gpm, whichever is less, for a minimum uninterrupted period of 72 hours. Pumping beyond 72 hours shall be at the discretion of the Owner but shall not exceed 240 hours. Equipment installation for the Constant Q test shall be installed and ready to operate prior to 10:00 a.m. If equipment is not ready by 10:00 a.m., start up of the test will be delayed until 8:00 a.m. the following morning and no standby time will be paid for the overnight delay.

Actual measurements taken while testing for yield and drawdown will be the responsibility of the Engineer. The Contractor shall maintain and operate all equipment and ensure its continuous uninterrupted operation as required. Tests must be continuous without interruption for a minimum of 72 hours. If the Constant Q test is interrupted before 72 hours of pumping have elapsed, the

well shall be allowed to recover for at least the amount of time the pump ran before failure. No payment shall be made for a Constant Q test that does not extend for a minimum 72 hours or the time specified by the Owner.

At the end of the 72 hour pumping period the pump may not be removed for a period of 72 hours or until approved by the Engineer whichever is less. Before the pump is removed the well shall be disinfected by adding 20 pounds of approximately 70 percent calcium hypochlorite tablets. The pump shall be turned on and off several times to thoroughly mix the disinfection solution in the well.

At the completion of testing and disinfection the well shall be sounded for total depth and sand and debris shall be removed from the bottom of the well.

Payment for pump testing shall be at the hourly rate specified under "SCHEDULE OF ITEMS AND PRICES". The hourly rate does not include the time spent for equipment installation and removal.

11. Plumbness and Alignment

The Contractor shall guarantee that the well when completed, shall be sufficiently straight and plumb to permit the free installation and operation of a submersible pump regularly recommended to be installed in a 10-inch diameter well casing. The

Contractor shall utilize a plumbness test approved by the Owner and the test shall be performed in the presence of the Owner.

Failure to pass plumbness or alignment tests shall result in a rejection of the subject well. In case of rejection, no payment shall be made for a well that fails plumbness or alignment tests.

12. Video Log

The Contractor shall provide a VHS video format color camera log of the completed production well. The video log shall be accomplished by a logging company with equipment specifically designed to conduct video logs of water wells. The video log shall confirm the well to be in good condition, meeting all the requirements of these Specifications as to diameter, material settings, alignment and the like. The Owner will not be required to accept the well or pay the Contractor for it if it does not meet all these requirements or if any of the well's component parts are left in a damaged condition.

Payment for the video log shall be at the lump sum price as stated under "SCHEDULE OF ITEMS AND PRICES".

13. Well Capping

After testing and after approval of the well by the Owner, the Production well shall be capped in a manner approved by the Engineer. The Production casing shall be capped with a 1/4-inch minimum thickness steel plate fully welded to the casing. The steel plate shall have a 1-inch diameter access port with a threaded nipple and cap welded to the plate. The exploratory well shall be equipped with a wellhead protector and locking cap as approved by the Engineer and can be field fabricated. Payment for the wellhead protector and locking cap shall be at the lump sum price as stated under "SCHEDULE OF ITEMS AND PRICES".

14. Site Restoration

Contractor shall restore site to original condition or better. Drilling fluids and cuttings shall be removed from pits. If after drilling fluids and cuttings are removed, importation of suitable material is required, it shall be imported and placed at the sole expense of the Contractor. Site restoration shall include compaction of suitable materials in areas planned for future construction of roads, buildings or other structures per Washoe County specifications. It is the responsibility of the Contractor to familiarize himself with any special requirements of site restoration. All site restoration shall be considered incidental to mobilization and demobilization and no additional payment will be made to the Contractor for site restoration work.

_	icrosoft Excel - ARROW C		Modern Halo				a d e	()
<u> </u>				E f.	AL ZI ME	100%	a (a)	
		4. Fi. or				1277		
Ark		BIU	手事導圈	\$ 76 3 36		世· ②、· A	Y	······································
	A310 🔽 =			*				
	A B	AD	AE	AF	AG	AH	A	AJ 🕴
	ARROWCREEK WATER		1		ŀ			
.	FLOW RECORD 2002	9-Jul-02	15-Jul-02	22-Jul-02	29-Jul-02	5 Aug 02	12-Aug-02	10 800
								19-Aug-
2 3	TOTAL OF WELLS	7,081,000	7,860,000	7,578,000	8,436,000	10,895,000	6,778,000	3
	DAYS	8	4 240 000	4 002 574	4 205 442	4 550 420	000 000	
4 5	AVG / GAL / DAY	885,125	1,310,000 558	1,082,571 558	1,205,143 558	1,556,429		
	# OF CUSTOMERS AVG / SVC / USE / DAY	558 1586	2348	1940	2160	571 2726	571 1696	3
-	ACRE FEET	21.73	24.12	23.26	25.89	33.44	20.80	
_	ACKE PEET	21.73	24.12	23.20	23.09	33.44	20.00	U.
3	18/F1 1 4							
á	WELL 1 WELL DEPTH	16.5	5.1	25	3.7	25.1	k 2.8	
1	PUMP RUNNING?	YES	YES	YES	YES	YES	YES	
<u>+</u>	TIME	8:15	2:15	2:00	10:30	8:35	3:00	
3	GPM	327	300	300	291	270	246	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4	METER READING	168,622,000	171,029,000	173,388,000	176,009,000	and the second second in the second	181,304,000	
5	FLOW IN GALLONS	2,223,000	2,407,000	2,359,000	2,621,000	3,426,000	1,869,000	James Suniversit
6	CL2 READING	31	28	148	142	140	139	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
71	LBS CL2 GAS USED	19.00	3.00	30.00	6.00	2.00	1.00	0.
8	The second secon			***************************************			*	
9	WELL 2					,		***************************************
o	WELL DEPTH	137.2	128.2	126.7	128.3	124.5	125.6	
1	PUMP RUNNING?	YES	YES	YES	YES	YES	YES	
2]	TIME	9:00	2:45	2:30	9:35	9:45	3:30	2001 1000 No. 1
	FLOW & CL2 USE	WELL PRODUCTION	PER MONTH /				Z	
ea				- لنا حسب			ICAPS NUM	_الــالــ
Ŋs	tart Elnbox - Micros MP.	MP2 Enterpris	RE; Crystal R	FreeCell Ga	n 🔯 Exploring	·FL X Micro	osoft	4:17 PM

MikeThey are having trouble with answereck #1
again - Look like the pumping level is getting
into the screens and pumping Sand-

- Turbine and Submersible Sales & Service
- Complete Well Rehabilitations
- Aquifer Testing Turbine or Submersible

Jess Coffman Washoe County Dept. of Water Resources 4930 Energy Way Reno, NV. 89502

Dear Jess.

As you are aware of, we removed 390' of 6", water lubricated turbine pump from Arrowcreek Well #1. It was removed because of having a very severe vibration and pumping sand. After the pump was removed, we found that the bowl was severely damaged. I have sent this bowl to Goulds to see if they will warranty it since it was installed in February of 2001. On Friday the 23rd, we conducted a video of the well to see if we could determine where the sand was entering the casing at. As the camera was lowered through the blank casing, we could see minimal buildup on the sides of the casing. At a depth of 284', there was a crack in the seam of the casing where it was welded and water was entering through the seperation. The camera touched static water level at 288'. As the camera continued down, we saw the top of the screen starting at 323'. The screen was approximately, 50% to 70% plugged with encrustations. At a depth of 338' to 340', there appeared that there was not any gravel around the screen. From 340' to 390' the screen was plugged anywhere from 50% to 75%. From 400' to 500' the screens were 60% to 90% plugged.

The pump bowl was setting at a depth of 390' to 405'. We could not see any damage caused by the bowl rubbing against the sides of the screen, even though there were substantial screen indentations on the bowl. Last year when the pump was removed, we found the same damage to the old bowl and that is why it was replaced. We conducted a deviation survey to the well and found it to be only 1 foot out of alignment, according to Welnco. The seperation in the casing at 284' could be from a faulty weld or stress to the casing from the pump. The crack can

be repaired with a liner swedged into place.

I recommend that the well be rehabilitated, to remove the heavy buildup of iron maganese deposits. Most of this buildup can be removed with brushing and swabbing the casing. I am also including a cost for a chemical treatment of the well to remove any deposits on the outside of the screened areas. With the screens being plugged, the well has to draw water in from the open areas of the screen, which causes the water to enter the casing at a higher velocity which may carry sand with it. Also the plugged screen requires the well to drawdown further causing cascading water in the well. If you decide to chemically treat the well with acid, be aware that we will have to have a large holding tank delivered to the site to pump the acid into to be treated. You will also see on the cost estimate that I have included costs to pump swab the well to remove the acid and also develope the screened areas of the well. This tool is 10' long with a tight fitting rubber swab on each end and a 40 hp submersible pump inside the tool. We lower the tool to the screened areas on 4" drop pipe and pump and swab the well at the same time, isolating the 10' section of screen. This does develope out all the fines and debris from the screen. This may also determine where the sand is entering the well at.

Look this over and if you have any questions on this information or the well video, call me

and I will be happy to discuss them with you.

Sincerely,

Dan Trampe

Washoe County Department of Water Resources 4930 Energy Way Reno, NV 89502-4106 Tel: (775) 954-4600 Fax: (775) 954-4610 February 21, 2001

TO:

Jess Coffman

FROM:

Tom Kelly

SUBJECT:

ArrowCreek Well #1

I understand work done at ArrowCreek Well #1 included replacing the pump with 18 stages of Goulds Pumps Model 9RCLC, which was the original pump minus two stages. In addition, 40-ft of pump column were added. We ran the pump today to see where it is operating on the pump curve and estimate the pump capacity at the 30-day drawdown. After 20 minutes of pumping, the discharge was 350 gpm at TDH of 817 feet (See attached calculations and pump curves). If during summer pumping conditions, the pumping level approaches the estimated 30-day pumping of 327 feet, the discharge will drop to about 290 to 300 gpm. At this pumping level, air should not be pulled into the system. If air is introduced into the system, then will need to reduce the discharge with the rate of flow valve. Keep an eye on the pumping levels and let me know if we are approaching 327 feet.

For the long-term capacity of this well, it appears that 300 gpm is a good estimate. After a couple of summers of pumping, we may be able to refine this estimate.

C:

Paul Orphan Terri Svetich John Hulett

Ed Schmidt Director

John M. Collins Utility Services Manager

Leonard E. Crowe, Jr. Water Resources Planning Manager

Department of

Test pumped Well #1

After 20 minutes of pumping conditions an:

- Tunk Level; 2016.
- Trunsducer Kealing: 40.5 fl. Set@ 334 ft. below surface. -40.5

293:5 Ft. is Pumping Level.

- Pressure at Pump Discharge: 275 psi.

Pressure after ch. Univerzouber: 277 psi.

Pressure Transducer Rading: 218 psi.

- Q = 350 gpm.

Pump Column.

6" per specs.

380 ft. logs. 40 ft alled. 420 ft. total.

TDH on Pump.

Disch. Mrss. = 225 psi, -> 520 ft.

Pumping Level to Surface -> 294 FC.

Col. friction 1055 > 0,008 (420 Ft) = 3 ft. 817 ft

At. 30 day Rumping Level of 327 tE.

TDH = 520 +327 +3 = 850 FE (850 = 47,2 //sha)

Per Pump Carve, Q = 290 gpm

ITT Industries Goulds Pumps

Limits:

Specific Speed:

Vertical Turbine:

Dimensions:

option #2

Goulds Turbine Pump Selection ver: 8.041

12/20/00

Selection file: (untitled)

Catalog: TURB60.MPC v 1.6.2

E6409CFPCO Curve:

Flow: 300 US gpm Design Point:

Head: 825 ft

TURBINE - 1800 Pump:

Speed: 1770 rpm

Size: 9RCLC; (18 stages)

Dia: 6.8125 in

Nss: ---

Sphere size: 0.56 in Power: --- bhp

Temperature: -- °F Pressure: 400 psig

Ns: 2290

Suction: --- in

Bowl Dia: 9.25 in

Discharge: --- in Max Lateral: 0.88 in

Thrust K Factor: 4.9

Fluid: Water

PUMP DATA SHEET

Goulds Turbine 60 Hz

Temperature: 60 °F

SG: 1

Viscosity: 1,122 cP

Vapor pressura: 0,2568 psia

Atm pressure: 14.7 psia

NPSHa: --- ft

Piping:

System: ---Suction: --- in

---- Data Point ----Flow: 300 US gpm

Head: 827 ft

Eff: 80.1%

Power: 78.1 bhp

NPSHr: 5 ft

- Design Curve --

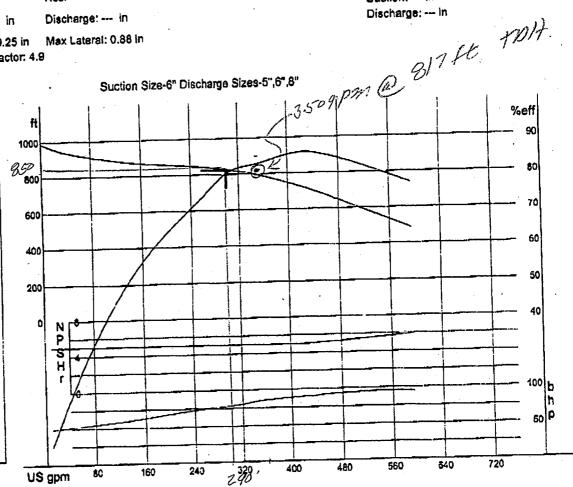
Shutoff Head: 988 ft

Shutoff dP: 428 psi

Min Flow: - US gpm

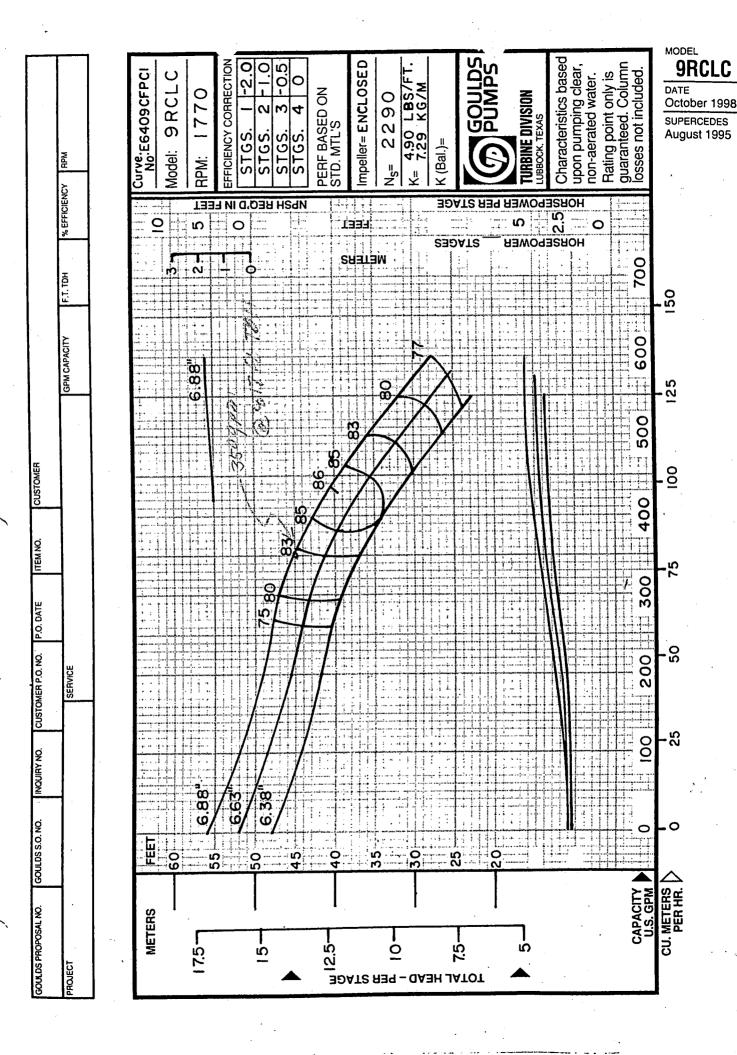
BEP: 85.9% eff

@ 428 US gpm


NOL Pwr: 95.4 bhp

@ 548 US gpm

-- Max Curve --


Max Pwr: 98.7 bhp

@ 551 US gpm

--- PERFORMANCE EVALUATION ---

Flow US gpm	Speed rpm	Head ft	Pump %eff	Power bhp	NPSHr ft	Motor %eff	Motor kW	Hrsiyr	Cost /kWh
360	1770	786	83.3	85.8	5				
300	1770	827	80.1	78.1	5				
240	1770	849	89.6	72.4	5			ż	
180	1770	869	57.3	65.6	5				
120	1770	689	45	58.8	5				

- Turbine and Submersible Sales & Service
- Complete Well Rehabilitations
- Aquifer Testing Turbine or Submersible

Cost estimate to mechanically rehabilitate Arrowcreek #1

 1. Mobilization and Demobilization of equipment & tools
 \$800.00

 2. Brush 10" well for 8 hrs. @\$150/hr.
 \$1,200.00

 3. Swab 10" well for 8 hrs. @\$150/hr.
 \$1,200.00

 4. Bail debris from well est. 2 hrs. @\$150/hr.
 \$300.00

 5. Disinfect well
 Total:\$3,700.00

Cost estimate to chemically treat Arrowcreek Well #1

7. Add in estimate #1	\$3,700.00* Total:\$13.345.00
6. Supply holding tank and treat acid	\$2,100.00
5, Pump and swab well screens est. 14 hrs @\$200/hr.	\$2,800.00
4. Mix and inject acid at various levels	\$475.00
3. 35 gallons of Johnson NW-310 @\$70/gal	\$2,450.00
2. 330 gallons of muratic acid with inhibitor @\$4/gal	\$1,320.00
1. Install and remove 440' of 1-1/4" tremme pipe	\$500.00

^{*}We still have to add in this cost to complete the rehabilitation

- Turbine and Submersible Sales & Service
- Complete Well Rehabilitations
- Aquifer Testing Turbine or Submersible

Option #1: Rebuild current Goulds bowl to 19 stage, model 9RCLC

1. 19 - 1.5"x1.875"x2.5" brass bowl bearings

14 - 9RCLC bowl cases 14 - Full trim impellars

1 - 210"x1.5" 416 stainless steel bowl shaft

8 hrs. shop labor

Parts are 5 to 8 working days for delivery

Total: \$10,197,00

Option #2: New 19 stage 9RCLC bowl

1. New Goulds, model 9RCLC, 19 stage bowl 5 to 8 working days for delivery

Total: \$8,750.00

Option #3: New 100 hp, submersible pump

1 New Goulds model 7CLC, 9stage submersible pur	mp
with a 100 hp Franklin motor	\$12,100.00
2. 410' of #1/0 flat submersible cable	\$2,665.00
3. 3 - Flomatic DI-80, 6" check valves	\$1,390.00
4. 6" flanged discharge head	\$700.00
5. Centralizers, splice kit and banding material	<u>\$390.00</u>
*	Total: \$17,245.00*

*New 6" drop pipe @\$9.50/ft.

4 to 5 working days for delivery

There is also another option that I suggest may be worth looking at. The submersible pump that we removed from the Cinder well located at Montreaux, was a Goulds model, 8ILC, 8 stage designed for 300 gpm with 880 tdh. If this pump is still avaliable, we could remove two of the trimmed impellars and replace one of them with a impellar trimmed to meet the design condition of 300 gpm with 825 tdh. The cost to redesign this bowl, including the labor is \$900.00. You would still need the 100 hp motor and the wire, check valves, discharge head and the miscellaneous items from item #5. I suggest using the 6" pipe that we removed from the well for the drop pipe.

- Turbine and Submersible Sales & Service
- Complete Well Rehabilitations
- Aquifer Testing Turbine or Submersible

Jess Coffman Washoe County Dept. of Water Resources 4930 Energy Way Reno, NV. 89520

Dear Jess.

After the removal of the pump from Arrowcreek #1, we found that the top bearing was damaged in the top of the bowl. We took the bowl back to our shop and dismantled it completely. Unfortunately, the bowl was damaged more severely than I thought. The top 15 stages and impellars are damaged beyond repair. The impellar skirts and the bowl cases have been worn to one side, indicating that the well is most likely out of alignment. The well is only 10" in diameter and the outside diameter of the bowl is 9.25", thus the well has to be straight to allow the proper alignment for a bowl of this size and length to operate properly. Also on the outside of the bowl cases we did notice that there are indentations of the wire screen which also indicates that the bowl is not centered in the casing. I am including prices on the cost of repairing the current bowl, the price for a new 19 stage bowl, and also a price for a new submersible pump. Look this information over and give me a call if you have any questions.

Sincerely

Dan Trampe

Deviation and Directional Interpretation Package

Prepared Especially For

Washoe County

Arrow Creek #1

Thursday, December 21, 2000

welenco

Drift-Pac

Wellbore Deviation and Directional Interpretation

welenco

Company	Washoe County			County	Washoe		State NV	>	
Well Number	Arrow Creek #1	8.7		Date of Survey	Thursday, December 21, 2000		Declination U	sed	
Field	Arrow Creek			Recorded By	Dan Ihde				
Equipment No.	L-10	Job Number	33719	welenco Office	Bakersfield	Witness	Mike Widmer		
Location	Arrow Creek Subdivision	bdivision							
Remarks	Orientation is True North	ue North		Tool Type	Gyroscopic	To	Tool Number	2536	20
Direction	Directional Calculation	Balan	Balanced Tangential Method		Dogleg Calculation		Lubinski Method	po	

Directions Measured Depth, Feet	Directional Calculation	Calculation		Tonoch L		1001 1ype		Cyroscopic	opic	1001	1 001 Number	7330
Direction: Measured Depth, Feet	al Calculati	no	Balar	Tongont					,	_	1 . 1 . 1 . 1 . 1	
Measured Ir Depth, Feet				Balanced Tangential M	ial Method		Ď	Dogleg Calculation	tion	7	Lubinski Method	
Measured Ir Depth, Feet												
	Measured Information	ion		Closure Calcul	alculations		-	Rectangular Coordinates	Coordinate	8	Dogleg Severit	Dogleg Severity Calculations
	Inclination, Degees	Azimuth Degrees, True	Course Deviation, Feet	True Vertical Depth,	Closure Distance, Feet	Closure Bearing Degrees, True	Latitude, Feet	Departure, Feet	Total Latitude, Feet	Total Departure, Feet	Dogleg Severity, 20 Feet	Dogleg Severity, Degs/100 Feet
0.00	0.00	219										
20.00	0.30	230	0.05	19.99	0.05	230.00	-0.03	-0.04	-0.03	-0.04	0.00	00.00
40.00	0.10	122	0.05	39.98	0.10	221.90	-0.04	-0.03	-0.07	-0.07	0.28	1.40
00.09	0.20	203	0.04	59.97	0.13	211.70	-0.04	00.00	-0.11	-0.07	0.18	0.92
80.00	0.10	191	0.05	96.62	0.18	208.60	-0.05	-0.02	-0.16	-0.09	0.03	0.15
100.00	0.20	226	0.05	99.95	0.23	210.50	-0.04	-0.03	-0.20	-0.12	0.00	0.43
120.00	0.40	129	0.07	119.94	0.28	198.70	-0.07	0.03	-0.27	-0.09	0.42	2.12
140.00	0.30	103	0.12	139.93	0.33	177.30	90.0-	0.11	-0.33	0.02	0.16	0.78
160.00	0.20	72	80.0	159.92	0.35	162.50	00.00	0.08	-0.33	0.10	0.13	0.65
180.00	0.10	09	0.05	179.91	0.34	154.50	0.02	0.05	-0.31	0.15	0.03	0.15
200.00	0.20	58	0.05	199.90	0.34	145.40	0.03	0.04	-0.28	0.19	00.00	0.02
220.00	0.20	28	0.07	219.89	0.33	134.30	0.05	0.05	-0.23	0.24	0.10	0.52
240.00	0.10	44	0.05	239.88	0.33	124.80	0.04	0.03	-0.19	0.27	0.04	0.20
260.00	0.20	352	0.05	259.87	0.31	117.30	0.05	0.01	-0.14	0.28	0.12	0.62
280.00	00.00	13	0.03	279.86	0.29	111.00	0.03	00.00	-0.11	0.28	00.00	0.00
300.00	0.30	332	0.05	299.85	0.26	104.00	0.05	-0.02	-0.06	0.26	00.00	0.00
320.00	0.30	305	0.10	319.84	0.19	85.20	0.08	-0.07	0.02	0.19	0.14	0.70
340.00	0.20	17	0.07	339.83	0.18	62.10	90.0	-0.03	0.08	0.16	0.29	1.44
360.00	0.10	39	0.05	359.82	0.22	55.00	0.05		0.13	0.18	0.05	0.27
380.00	0.30	326	90.0	379.81	0.25	40.90	90.0	-0.02	0.19	0.16	0.21	1.03
400.00	0.30	26	0.09	399.80	0.32	28.70	0.00	-0.01	0.28	0.15	0.30	1.50
420.00	0.20	28	0.09	419.79	0.40	27.90	0.08	0.04	0.36	0.19	0.01	0.04
440.00	0.20	339	90.0	439.78	0.47	24.60	90.0	00.00	0.42	0.19	0.17	0.83
460.00	0.20	279	90.0	459.77	0.48	17.30	0.04	-0.05	0.46	0.14	0.20	1.00
480.00	0.40	278	0.10	479.76	0.48	4.40	0.02	-0.10	0.48	0.04	0.01	0.03

358.30

egre
Ξ.
Bearing
Closure
Final

1.80

0.36

-0.02

0.50

90.0-

0.02

358.10

0.50

499.75 503.74

0.06

36

0.10

0.10

500.00

True

0.00

Dogleg Severity, Degs/100 Feet

Dogleg Severity,

Total Departure,

Latitude,

Feet

Bearing Degrees,

Distance,

Course Deviation,

> Degrees, True

Degees

Inclination, Azimuth

Measured Depth,

Feet

Measured Information

Feet

Feet

True Vertical Depth,

Feet

Closure

Total

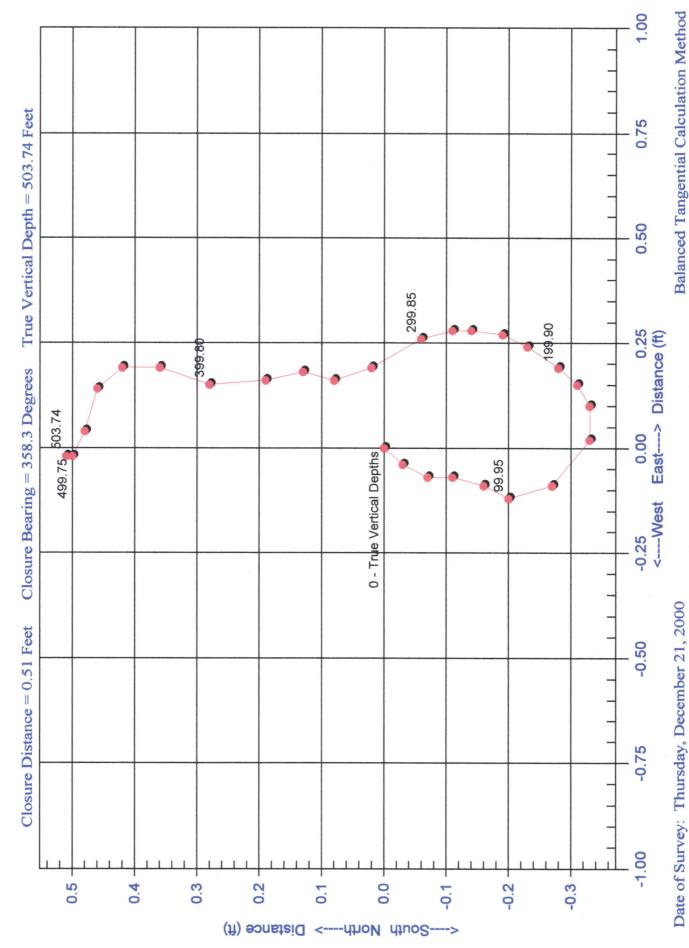
Departure,

Latitude, Feet

Closure

Closure Calculations

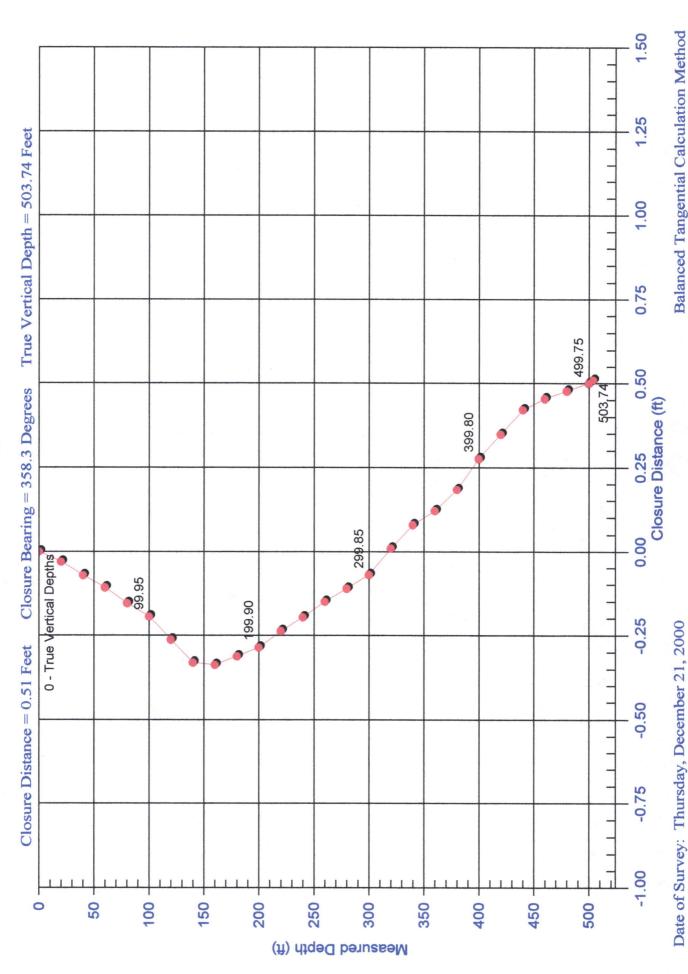
20 Feet


Feet

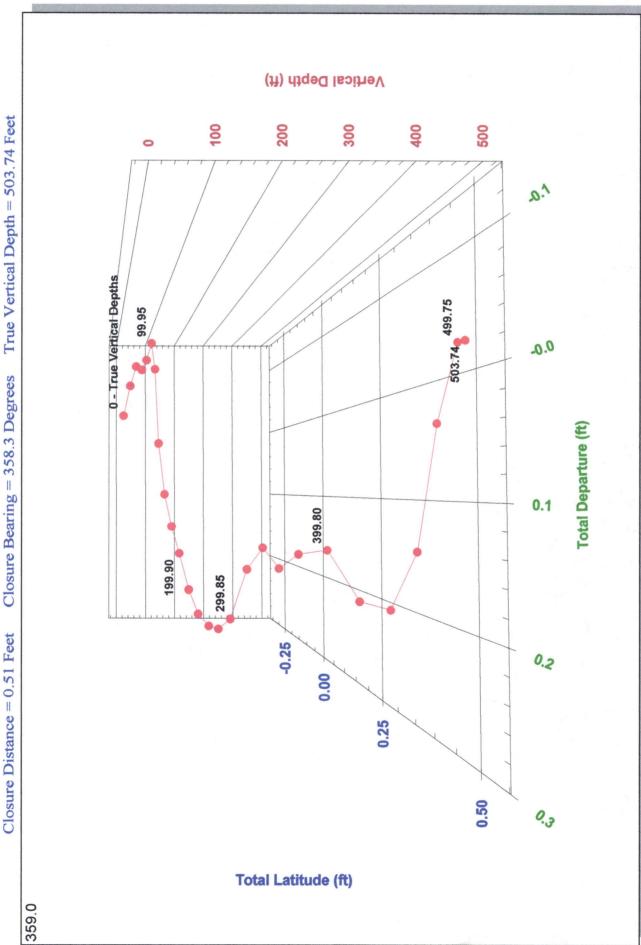
Feet

Dogleg Severity Calculations

Rectangular Coordinates

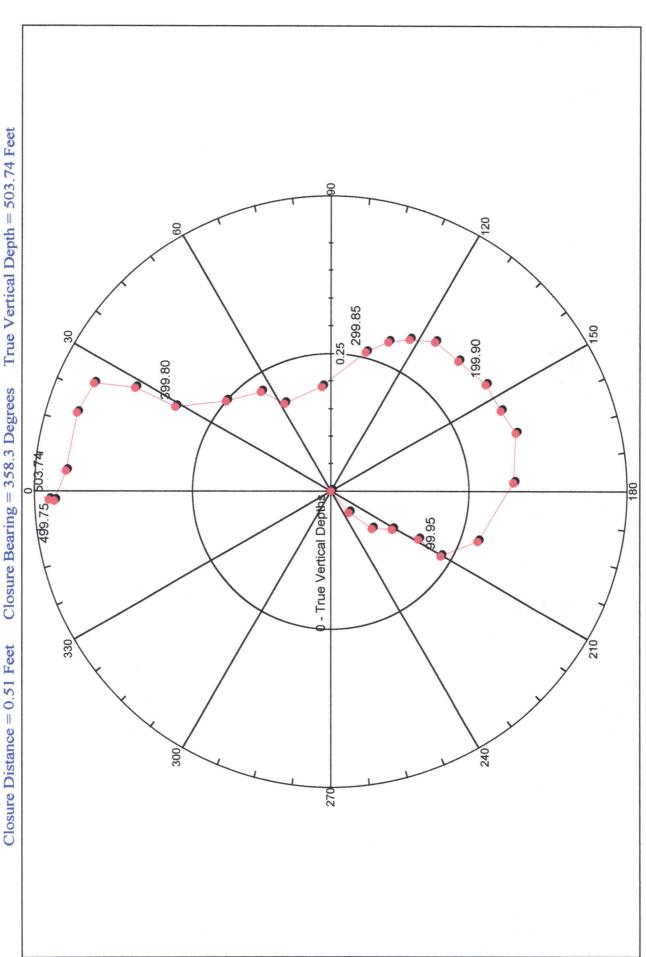

Washoe County
Arrow Creek #1
Drift-Pac Plan View

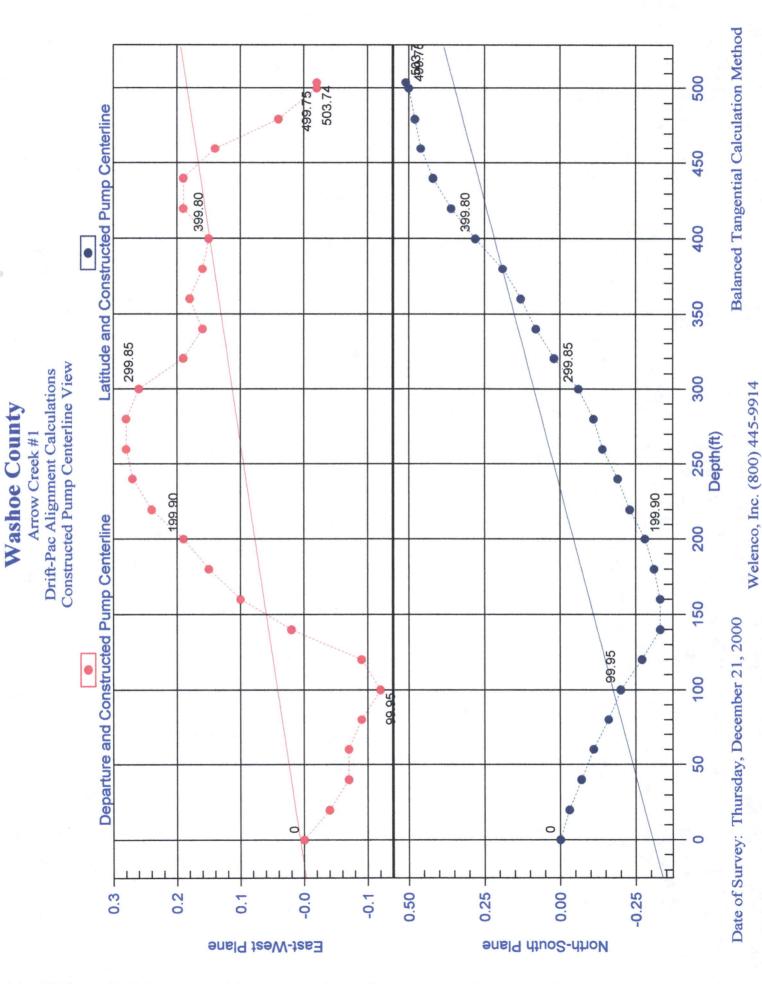
Welenco, Inc. (800) 445-9914


Washoe County
Arrow Creek #1

Arrow Creek #1
Drift-Pac Plane of Closure View

Welenco, Inc. (800) 445-9914





True Vertical Depth = 503.74 Feet

Date of Survey: Thursday, December 21, 2000

Balanced Tangential Calculation Method Welenco, Inc. (800) 445-9914

Balanced Tangential Method

- - - - Calculated Wellbore Path

Actual Wellbore Path

inclination and direction angles, which are used in standard computational procedures. Other common and direction angles at the upper and lower ends of the course length in a manner so as to balance the two sets theoretical standpoint, this method combines the The Balanced Tangential Method uses the inclination trigonometric functions to provide the average balanced names for this method are Vector Averaging, of measured angles over a course length. From a Acceleration, and Trapezoidal.

△ North 2 **SMD**/2 **△**East **△MD**/2

 \triangle North = $[\triangle MD/2] \times [\sin(I_1) \times \cos(A_1) + \sin(I_2) \times \cos(A_2)]$ \triangle East = $[\triangle MD/2] \times [\sin(I_1) \times \sin(A_1) + \sin(I_2) \times \sin(A_2)]$ $\triangle \text{Vertical} = [\triangle MD/2] \times [\cos(l_1) + \cos(l_1)]$

OWEN BROTHERS PUMP

POBOX 60808 * RENO * NEVADA * 89506 * 702-677-2574 * FAX 702-972-5081

Per Roger Owen (10/13/98), this is pump installed.

SPECIFICATIONS FOR PUMPING **EQUIPMENT WASHOE COUNTY** SOUTH POINTE WELL #1

(10 Sheets Total w/ Cover)

JANUARY 30, 1997

Mr. John Bronder, P.E. County of Washoe Dept of Public Works Utility Division P O Box 11130 Reno NV 89520-0027

SUBMITTAL REVIEW
AOTION
V C DOUBTED STAKEN
Language Control
TIMAUSER - DETCULEE
Office of Washce County Utility Division
By JNB 3ata 2-5-97

Specifications Vertical Turbine Pump Water Lubricated

A.	Scope

This specification covers a deep well lineshaft turbine pump with above ground discharge, arranged for water lubrication of the lineshaft bearings by the water being pumped and furnished with suitable driver and accessories as specified herein. The pumping unit shall be designed and furnished in accordance with the latest hydraulic institute and AWWA specifications for lineshaft turbine pumps.

B. Service Conditions

The pump shall be designed and o

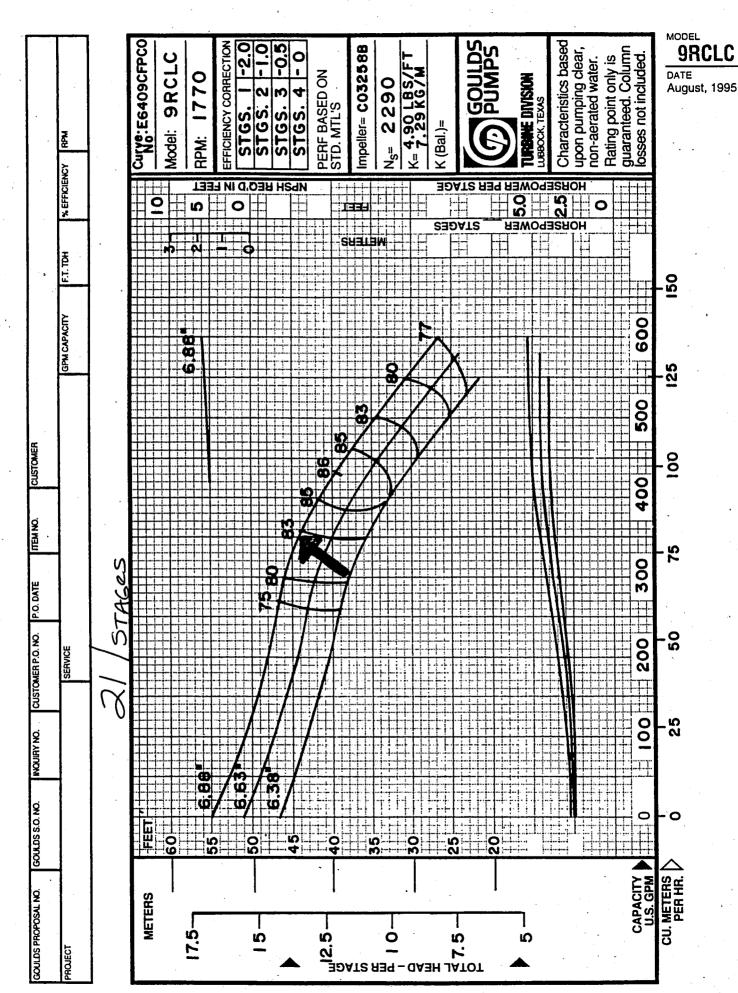
	Other manufacturers will be o	np application. The pump shall onsidered providing the unit offener. Factory pump curves for all the control of the curves for all the curves for	be the product of, and	d manufactur	ed by Goulds I	_
E	C. Operating Conditions					•
	Design conditions:	350 Gallons per minute		,	• -	•
	esign head:	916 Feet total dynamic he	ead (TDH)			A
	finimum pump efficiency of:					
٨	laximum allowable speed:	1800 RPM			1	
	iquid to be pumped:	Water				
P	ump bowl setting: Top of bo.	1 <u>360</u> Feet ■ 380 F+.	Suction		,	
	Vell diameter I.D.:					
	. Pump Construction:	•	·			
	interchangeability. A discharbowls will be allowed on boy	accurately machined and fitted aximum efficiency and wear pro fige adapter shall be used to co will sizes 8" and smaller. To ensi dry owned by the pump manufa	nnect bowls to the dis	ate bowls sha	all be of identic	cal design for
2.	for optimum performance ar contain special workmanship	I be constructed from ASTM BS. They shall be free from defected minimum vibration. Impellers p to temporarily increase efficies steel (or416 SS). The	s and must be accura are to be standard p	ately cast, ma roduct of the	ichined, balani pump manufa	ced, and filed cturer and not
3.	The suction bowl shall be princorporated in the pump de ing at the bottom for easy re	ovided with a non-soluble great sign to protect this bearing fron moval of the bearing.	se packed bronze bear n abrasives. The bear	aring, and a b ring housing s	oronze sand co shall have a su	ollar shall be officient open-
4 .		rger shall (or shall not and intermediate bowls. Wear rathe impeller to provide adequate				
5.		structed from ASTM A582 type				

polished and shall be supported by water lubricated bronze bearings, or ____optional fluted rubber bearings.

E. Column Assembly - Water Lubricated

- Pump speeds up to 2200 RPM shall have intermediate column lengths and lineshaft bearing spacing not to exceed 10 feet. Pump speeds between 2200 RPM and 3600 RPM shall have intermediate column length and bearing spacing no greater than 5 feet.
- 3. Lineshaft shall be of ample size to operate the pump without distortion or vibration. Diameter of the shaft shall be such that it does not exceed the horsepower limitations indicated in the engineering section of the Goulds Catalog. Shaft shall be furnished in interchangeable sections not over ten feet in length, and shall be coupled with extra-strong threaded steel couplings machined from solid bar steel. Lineshaft shall be C1045 steel with a chrome spot surfacing for the bearing area. The chrome spot to be electroplated.
- 4. Bronze centering spiders of the drop-in type shall be furnished for shaft stabilization at each column pipe coupling. Bearings shall be fluted rubber retained in the spider by a shoulder on each end of the bearing.

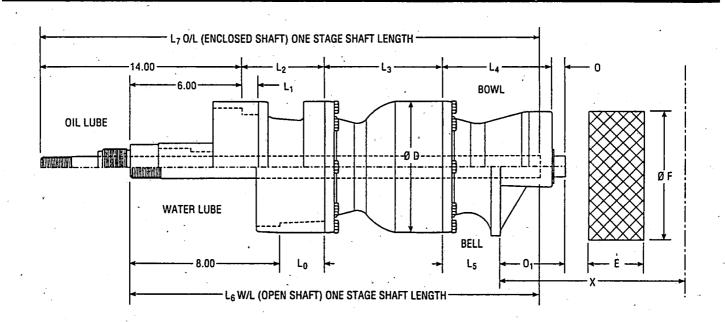
F. Discharge Head Assembly - Water Lubricated - , 250 PSI FLANGE


- 1. Discharge head shall be of the high profile type and be a suitable base of high grade cast iron, ASTM A48–30, or fabricated steel. It shall be provided for mounting the motor with a discharge elbow having an above ground flanged discharge outlet for ________ inch standard pipe. The design shall have sufficient capacity to carry the combined weight of the column assembly. The design shall allow the top shaft to couple above the stuffing box. The head shall have a ½" NPT connection for a pressure gauge.
- 2. The stuffing box shall be cast iron and shall contain a minimum of five rings of packing. It shall have a pressure relief connection. The packing gland shall be a bronze split type secured in place with noncorrosive studs and nuts. The bearing shall be SAE660 bronze. A rubber slinger shall be secured to the shaft above the packing gland.

G. Suction Pipe and Strainer

The suction pipe shall be ________ feet in length and shall have a minimum inside diameter and weight equal to that of the discharge column pipe. A suitable cone strainer of galvanized steel shall be provided having a free area of at least five times the flow area of the suction pipe.

H. Electric Motor


The motor shall be a heavy duty squirrel cage induction type, NEMA design B, 160 RPM vertical hollow shaft motor, with a non reverse ratchet to prevent reverse rotation of the rotating elements. A suitable thrust bearing shall be incorporated in the upper end of the motor adequate to receive the entire hydraulic thrust load of the pump unit plus the weight of the rotating parts under all conditions of operation. The motor shall be nermal (or premium) efficiency with a WP-1 enclosure, 1.15 service factor, and suitable for use on a 460 volt, three phase, 60 cycle electric service.

Vertical Turbine Pumps Engineering Data

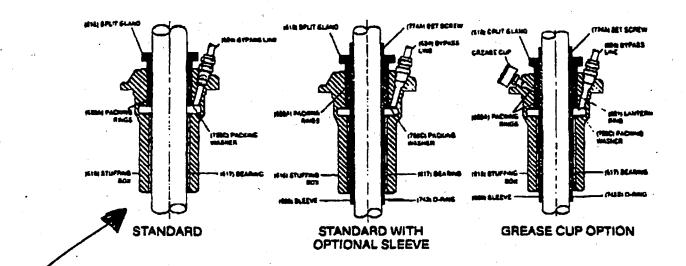
Effective January 1, 1997


Turbine Mechanical Bowl Data

Model			В	owl As	sembl	y Leng	gth			•	Stra	sket iner	Floor Clearance	Bowl O.D.	Bowl Shaft	Available Lineshaft	Column Pipe	Suction Pipe		nge Bowl Ny Weight	Add'l Stage
Size	L ₀	L ₁	L ₂	L ₃	L ₄	L ₅	L ₆	L ₇	0	01	(Opti	onal) F	X	0.0.	Dia.	Sizes	Size	Size	Open Shaft	Enclosed Shaft	Weigh
5C	1.81	NA	4.75	4.63	5.0	NA	18.50	NA	0.63	NA	NA	NA	2.0	5.13	1.0	1.0	3.4	4	42	NA	13
5T	1.81	NA	4.75	4.81	5.0	NA	18.63	NA	0.63	NA	NA	NA	2.0	5.13	1.0	1.0	3,4	4	43	NA NA	13
6C	2.5	NA	4.75	5.13	5.0	3.94	19.88	28.13	0.63	1.68	4.0	7.31	2.0	5.88	1.0	1.0	3,4	4	47	55	17
6DH	2.06	NA	5.13	5.5	5.38	5.38	21.06	30.13	1.0	1.5	4.0	7.31	4.63	5.5	1.0	1.0	3.4	4.5	48	57	16
6RA	2.06	NA	5.13	3.75	NA	3.0	19.19	28.25	NA	4.0	4.88	7.0	6.0	5.5	1.0	1.0	3,4	NA	42	52	20
7C	2.38	.88	4.38	6.38	5.88	3.25	22.0	30.0	1.0	3.63	6.81	8.0	4.5	7.13	1.19	1.0-1.19	5,6	5	50	72	28
7RA	2.38	1.19	4.38	4.5	NA	3.63	20.38	28.38	NA	3.38	4.88	7.0	5.38	7.5	1.0	1.0	3,4	NA	51	69	28
71	2.38	.88	4.38	7.09	5.88	3.25	22.81	30.81	1.0	3.63	6.81	8.0	5.50	7.13	1.19	1.0-1.19	5,6	5	53	71	31
7WA	2.38	.88	4.38	5.5	6.13	3.25	21.25	29.25	1.0	3.63	6.81	8.0	8.0	7.13	1.19	1.0-1.19	4,5,6	4	54	76	30
8DH	2.38	1.19	4.38	7.38	6.0	6.0	24.75	32.75	2.5	2.5	8.5	9.5	9.0	7.5	1.19	1.0-1.19	5,6	6	80	95	34
81	2.38	1.19	4.38	6.38	6.38	3.75	22.94	30.94	1.0	4.13	6.25	8.63	6.5	7.5	1.19	1.0-1.19	4,5,6	5	75	90	33
8RA	2.38	1.19	4.38	5.0	NA	3.13	20.63	28.63	NA	3.88	5.88	8.0	5.88	7.5	1.19	1.0-1.19	4,5,6	NA	67	82	36
8RJ	2.38	1.19	4.38	6.5	6.25	3.5	22.53	30.53	1.0	3.75	5.5	9.25	6.5	7.5	1.19	1.0-1.19	5.6	5	77	92	34
9RA	2.38	1.19	4.38	6 .5	NA	4.0	21.88	29.88	NA	5.25	5.88	8.0	.7.25	7.5	1.19	1.0-1.19	4,5,6	NA	66	126	46
9RC	3.0	1.25	5.25	8.5	9.25	5.0	28.0	36.25	0.88	5.13	5.5	11.0	7.13	9.25	1.5	1.0-1.5	5,6,8	6	144	182	64
9T	3.0	1.25	5.25	9.25	9.25	5.0	28.75	37.0	0.88	5.13	5.5	11.0	7.13	9.25	1.5	1.0-1.5	5.6.8	6	150	188	70
9WA	3.0	1.25	5.25	6.63	9.25	5.0	26.13	34.38	0.88	5.13	5.5	11.0	7.13	9.25	1.5	1.0-1.5	5,6,8	6	138	176	58
10RDH	2.94	1.25	5.19	9.25	8.38	5.75	30.63	38.88	4.44	7.06	14.0	14.25	14.0	9.5	1.69	1.0-1.69	6,8	8	140	170	64
101	2.94	1.25	5.19	7.81	9.75	5.0	27.44	35.69	1.0	5.75	6.63	10.75	7.5	9.5	1.5	1.0-1.5	6.8	6	128	162	58
10L	2.94	1.25	7.63	8.75	9.38	9.38	30.81	41.5	4.0	4.0	5.25	11.0	6.5	9.5	1.69	1.0-1.69	8,10	8	195	225	64
10RA	2.94	1.25	5.19	6.63	NA	3.63	25.06	33.31	NA	3.0	6.5	9.75	7.88	9.5	1.5	1.0-1.5	4.6.8	NA	141	176	76
10RJ	2.94	1.25	5.19	8.4	9.75	5.88	28.13	36.44	1.0	5.88	5.5	11.0	7.5	9.5	1.5	1.0-1.5	6.8	6	130	165	60
10WA	2.94	1.25	5.19	7.63	9.25	5.06	27.13	35.38	1.0	5.0	5.5	11.0	9.0	9.5	1.5	1.0-1.5	4.6.8	6	126	160	56

(All dimensions are in inches and weights in lbs.) Continued on next page.

x:/edwtp.dgn Feb. 27, 1996 15:33:14 Do1848B


									•				
	4 × 16.4	6.18.3	SIZE	230. 01 COL. 502	12 T 24.6	10 H 16.5	2.5	*	ā	3126	125# 01 002.512		
	19.5MM.1	6 X 16.5 16.58M-D	8	COL.SIZE MOTOR	21.50	7,5011.0	10 Sec. 1	16.5419.0	(142301	8	125# OISCH. HO COL.SIZE HOTOR		
	13.00	1974E)	C	•	- A	10 m	in in	2 2	a .	n	•		
	7.50	1111.31	0		10.73 170.73	2.2	7. 50 113-11	6.78	Ē.	0			
	17.50	19.50	3		22	Î =	17.50	15.50	13. EG	Е			
	1.46	19:41	**		13.5		27	j -	Î .	F			
	23.50	21.00	G	DISC	in a	Ē	22.52 22.52 22.52	23.50	7	G	DISO	And the second s	
	(m.g)		×	DISCHARGE HEAD	ĝ.	22.73 10.73		21.25	2 =	æ	DISCHARGE HEAD	•	
		11-613	د	5	.075 70.27	:. :::::::::::::::::::::::::::::::::::	:16:11	17.5	19.53	•	6		_
	Ē	754	١		(F) (2)	21 (143,47	ĒR	ĒR	12 T	٦			
	1.82	9.44. (98.51	0	-	3.2	17.41 17.41	(Z)-1	(P.4)	11.12	٥			
	12.00 126.01	10.25 1780)	R		142	14,75 OH:	12.25	100	1.75	23			
	19.486	2 Z	*		18 34 34	Ē	15.24 24	18.20 18.20 18.20	(487.5)	3			
ALL SINGH	22	72.27	×		18.4	i a	Î	ž 2		×			_
11 N3 MB39K	. 613 (27.2)	. 875 518.	۲	OPTIONAL BASE PLATE	(7).43	2.3	57.57	 	19.62	Ą	OPTIONAL BASE PLATE		
STOM THE EMPLOYERS AND FUND	16.63	14.00	2	CATE	15.00 15.00	17	1000	1 . E.C.	1380.83	2	ATE.		
18 ()	11-1/5	11-175	22		¥4-10	3/3-11		F-8.4	1/2-13	72	:		
L	,	-										_	J

25.1 October 1, 1986 (Sup. 8/1/82)

ATTN: JOE

Stuffing Box Sectionals

Type of Packing	Applications	Pressure Range	Temperature Range	Comments
Graphite & Petrolatum Impregnated Non Abestos Yarn	General Services	300#	Ambient to	
Lead Foil	High Temperature		250°F to 450°F	Shaft hardfacing or a shaft sleeve is recommends

	Numb Packing		Packing Required	Box Depth
Shaft or Sleave Size (2)	Standard	With Lentern Ring	Sizo	Standard With One Lantern Ring
1"	. 6	4	%" square	2¼"
1344"	6	4	%" square	2¼"
11/4"	6	4	%" square	2%"
115/16"	8	4	%" square	2%"
115/4"	6	4	%" square	2%"
241"	6	4	%" square	2%"
27/10"	6	4	%" square	2%"
211/16"	6	4	¼" square	31/2"
215/16"	6	4	½" square	3%"

- NOTES:

 1. Stuffing box and lineshaft bearing should be sized alike.

 2. Sleave is two (2) sizes larger than shaft.

VERTICAL PREMIUM EFFICIENT

WPI HOLLOSHAFT & SOLID SHAFT 230, 460, & 575 VOLTS; 3 PHASE, 60 HERTZ HIGH THRUST ENGINEERING DATA

SECTION: PAGE:

504 22

EFFECTIVE: SUPERSEDES:

DATED:

01-15-93

	P	G	8.	2
1	1-1	15	-9	2

	RF	PM .	% I	EFFICIEN	ICY	% P	OWER FA	ACTOR		ENT (AMPS) OVOLTS	TORQUE FULL LOAD	AT FULL VOLTA	GE (FTLBS.)	
i.P.	NO LOAD	FULL LOAD	FULL	3/4 LOAD	1/2 LOAD	FULL	3/4	1/2	FULL	LOCKED	TORQUE AT FULL LOAD	(STARTING)	BREAKDOWN	NEMA
5	900	880	88.4	88.7	87.3	71.4	64.5	52.5	10AD 7.4	STARTING 48	SPEED		OF FULL LOAD	CODE
	1800	1760	91.2	91.6	91.0	85.9	83.1	76.1	9.3	63.5	22	130 175	205 215	 H
-1/2	1200	1170	89.5	90.1	89.3	80.4	75.1	64.5	9.8	68	34	150	205	H
	900	875	88.6	89.3	88.5	73.3	66.7	55.2	10.8	63.5	45	125	200	H
	1800	1760	91.2	91.9	91.6	86.3	83.8	77.1	12.3	78	30	165	200	G
10	1200	1170	88.8	89.7	89.2	81.4	75.8	65.2	13.0	91	45	150	200	Ĵ
	900	875	88.6	89.9	89.8	75.9	70.7	60.6	13.9	81	60	125	200	Ğ
_	1800	1765	91.7	92.2	91.4	81.9	78.2	69.4	18.7	116	45	160	200	G
. 15	1200	1170	90.5	91.4	91.2	81.5	76.6	66.7	19.1	136	67	140	200	J
	900	875	87.9	89.1	88.7	74.0	67.4	55.9	21.6	116	90	125	200	G
	3600	3525	90.5	91.4	91.1	88.0	87.4	83.4	23.5	145	30	130	200	G
20	1800	1770	92.4	93.3	93.2	85.0	83.7	78.4	23.8	145	60	150	200	G
	1200 900	1170	90.5	91.7	91.7	82.2	77.6	68.0	25.2	200	90	135	200	J
		880	90.1	91.1	90.8	75.1	70.5	_60.1_	_27.7	145	119	125	200	G
25	3600 1800	3530 1770	91.2 93.0	92.1	91.8	87.1	86.2	81.6	29.4	182.5	37	130	200	G
25	1200	1175	90.9	93.9 92.0	93.9	83.8	81.6	74.8	30.0	182.5	74	150	· 200	G
	900	880	90.3	91.6	92.0 91.7	85.0	83.4	77.9	30.3	200	112	135	200	G
_	3600	3520	90.7	92.0	92.1	76.8 88.2	73.0	63.7	33.8	182.5	149	125	200	G
30	1800	1765	92.9	94.0	94.2	84.2	82.5	83.1 76.4	35.1 35.9	217.5	45	130	200	G
	1200	1180	91.5	92.6	92.6	85.5	83.8	78.3	35.9	217.5	89	150	200	G
	900	880	90.9	92.0	91.7	76.1	70.8	76.3 59.7		258	134	135	200	G
	3600	3520	92.1	93.3	93.4	89.1	88.5	84.7	40.6 45.7	217.5	179	125	200	G
10	1800	1780	93.2	93.7	93.3	87.2	86.4	82.2	45.7 46.1	290 290	60	125	200	G
	1200	1175	91.5	92.8	93.0	84.6	82.3	75.4	48.4	290 336	118	140	200	G
	900	880	91.2	92.5	92.6	77.4	72.8	62.4	53.1	290	179	135	200	H
	3600	3545	90.7	90.8	89.4	85.3	83.9	78.4	60.5	362.5	239	125	200	G
i0	1800	1780	93.9	94.4	94.0	87.6	88.1	80.6	56.7	362.5 36.5	74	120	200	G
	1200	1175	92.5	93.7	93.9	86.2	84.1	77.8	58.7	429	148 223	140	200	G
	900	880	91.1	92.1	92.0	79.5	75.2	65.5	64.6	362.5	299	135 125	200	н
	3600	3550	91.4	91.8	90.8	87.7	87.0	83.1	70.1	435	89	120	200	G
۰0	1800	1780	94.1	94.7	94.5	87.9	86.7	81.7	67.9	435	178	140	200	G
	1200	1175	92.4	93.4	93.4	86.8	84.9	78.9	70.1	478	268	135	200	H
	900	880	91.7	92.7	92.6	80.3	76.3	67.1	76.4	435	358	125	200	G
	3600	3540	91.6	92.4	92.0	88.1	88.5	86.1	87.0	542.5	111	105	200	G
′ 5	1800	1775	94.1	94.9	94.9	88.0	86.9	82.0	84.8	542.5	222	140	200	Ğ
	1200	1175	93.4	94.3	94.4	87.8	86.4	81.7	85.6	636	335	135	200	H
	900	890	93.7	94.4	94.2	80,1	77.2	69.1	93.6	542.5	443	125	200	Ğ
`	3600	3535	92.1	93.1	93.0	89.1	89.4	87.2	114.1	725	149	105	200	G
00	1800	1780	94.6	95.2	95.0	87.0	86.1	81.5	108.9	725	295	125	200	G
	1200	1185	93.4	94.2	94.0	84.5	82.1	75.1	118.6	792	443	125	- 200	H
-	900	890	93.8	94.5	94.4	80.2	76.9	68.2	124.5	725	591	125	200	G
	3600	3545	92.9	93.5	93.1	88.9	88.1	93.9	141.7	907.5	185	100	200	G
25 -		1780	94.9	95.5	95.4	87.0	.86.0	81.4	141.7	907.5	369	110	200	G
_	1200	1190	94.0	94.6	94.3	84.0	80.8	72.6	148.2	1113	553	125	200	H
50	3600	3545	93.1	93.9	93.8	89.9	89.2	85.4	167.8	1085	222	100	200	G
30	1800 1200	1785	95.5	95.7	95.2	85.8	82.8	75.1	171.2	1085	443	110 "	200	G
30		1185	93.7	94.8	95.1	86.8	85.6	80.8	172.7	1180	665	120	200	H
יינ	3600	3560	93.4	93.7	92.8	89.1	88.3	84.4	224.9	1450	295	100	200	G
50	1800 3600	1780 3550	95.5 93.4	95.9 93.9	95.7 93.4	87.4	85.5	79.3	224.3	1450	591	100	200	G
ا ۵۰	1800	1780	95.4 95.1	93.9 95.8	93.4 95.8	89.2	88.4	84.3	280.8	1825	370	70	. 175	G
	.000	1700	33.1	85.6	33.0·	86.7	84.8	78.4	283.8	1825	738	80	175	G

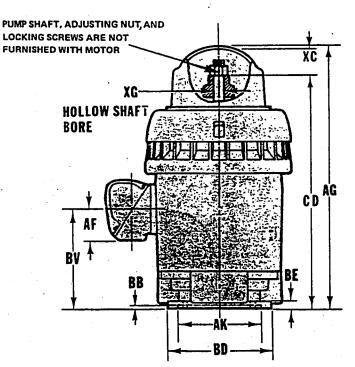
Efficiency & power factor values listed above are representative values. For guaranteed and certified values, refer to company.

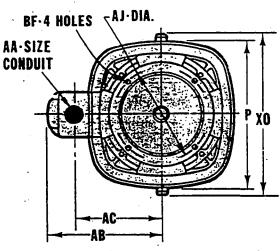
The code letter is an indication of the locked rotor K.V.A. in accordance with the National Electrical Code.

When performance values have been quoted, they should be shown on the order.

For data not listed, refer to company. Data subject to change without notice.

Extra high thrust may decrease typical efficiency below values listed above.




VERTICAL MOTORS

DIMENSIONS

FRAMES 324TP THRU 405TPA -- TYPES RU, RUE (DRIPPROOF) -- WEATHER PROTECTED TYPE 1

ALL DIMENSIONS ARE IN INCHES

BASIC FRAME	p•	AA	АВ	AC	AF	AG	BE	BV	CD	xc	xo
320	18-3/8	3	15-3/16	11-5/8	. 4	32-5/8	11/16	11-1/16	28-7/32	4-7/32	21
360	18-3/8	3	15-3/16	11-5/8	4	35-9/16	11/16	14	31-5/32	4-7/32	21
400	20-1/2	3	16-3/8	12-3/4	4	41-5/8	3/4	18-1/8	36-15/16	4-9/16	23-3/8

\Box					BD			BRACKET
	FRAME	AJ	AK	BB	MAX.	BF	XG	PART NO.
	324, 326TP	14-3/4	13-1/2	1/4	16-1/2	11/16	1-9/16	192169
	324, 326TPH	9-1/8	8-1/4	3/16	12	7/16	1-9/16	192163
	364, 365TP	14-3/4	13-1/2	1/4	16-1/2	11/16	1.9/16	192169
	364, 365TPA	9-1/8	8-1/4	3/16	12	7/16	1-9/16	192163
	➤ 404, 405TP	14-3/4	13-1/2	1/4	16-1/2	11/16	1-7/8	188662
\Box	404, 405TPA	14-3/4	13-1/2	1/4	20	11/16	1-7/8	188664

Largest motor width.

Conduit box opening may be located in steps of 90 degrees. Standard as shown with conduit opening down.

All rough casting dimensions may vary by 1/4" due to casting variations.

	AK DIM	ENSION
TOLERANCES	8-1/4	13-1/2
Face runout	.004 F.I.R.	.007 F.I.R.
Permissible eccentricity of mounting rabbet	.004 F.I.R.	.007 F.I.R.
AK dimension	+.003	+.005

Printed in U.S.A.

U.S. ELECTRICAL MOTORS DIVISION EMERSON ELECTRIC CO.

OWEN BROTHERS PUMP

POBOX 60808 * RENO * NEVADA * 89506 * 702-677-2574 * FAX 702-972-5081

Per Roger Owen (10/13/98), this is pump installed.

SPECIFICATIONS FOR PUMPING EQUIPMENT WASHOE COUNTY SOUTH POINTE WELL #2

(8 Sheets Total w/ Cover)

JANUARY 30, 1997

Mr. John Bronder, P.E.

County of Washoe Dept of Public Works Utility Division P O Box 11130 Reno NV 89520-0027

Reading ~ 70 f while running 730 gpm

off, Recovered to 131 on electronic meter Reads 203.75 ft w/ sounder

Transducer 15 @ 337 ft below top of pedistul

SUBMITTAL REVIEW
ACTON
V 1 NO SUDSET ONE TAKEN A
DETECTION OF THE PROPERTY OF T
TIMEUSITE
Office of Michae County Utility Division
3y JNB Data 2-5-97

Specifications Vertical Turbine Pump Water Lubricated

A.	Scone

This specification covers a deep well lineshaft turbine pump with above ground discharge, arranged for water lubrication of the lineshaft bearings by the water being pumped and furnished with suitable driver and accessories as specified herein. The pumping unit shall be designed and furnished in accordance with the latest hydraulic institute and AWWA specifications for lineshaft turbine pumps.

B. Service Conditions

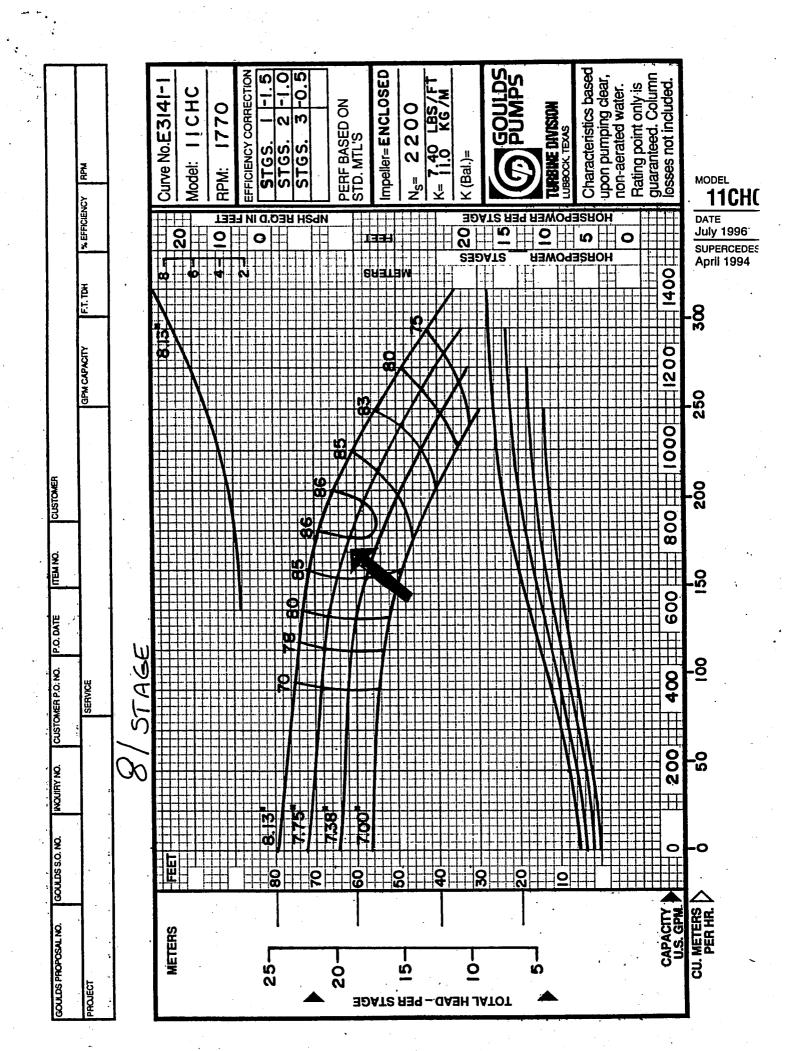
typical continuous turbine pun Other manufacturers will be or	and constructed to operate satisfactorily np application. The pump shall be the proposition of the proposition of the providing the unit offered is a ner. Factory pump curves for alternate p	oduct of, and manufact n approved equal in all	tured by Goulds Pump respects to the brand	os. Inc.
C. Operating Conditions Design conditions:	750 Gallons per minute		· · · · · · · · · · · · · · · · · · ·	
Design head:	500 Feet total dynamic head (TDF	i)		
Minimum pump efficiency of:	78_ Percent			
Maximum allowable speed:	/800 RPM		,	
Liquid to be pumped:	Water	•	,	
Pump bowl setting:	400 Feeth Top (410 Ft to	Suction)	•	
Well diameter I.D.:				
grained cast iron, and shall or other faults and must be glass lined waterways for m interchangeability. A discha bowls will be allowed on bo	ediate bowls, suction bowl, and discharg conform to ASTM designation A48, class accurately machined and fitted to close maximum efficiency and wear protection, arge adapter shall be used to connect bowl sizes 8" and smaller. To ensure qualitative owned by the pump manufacturer.	ss 30. They shall be fre tolerances. The interm All intermediate bowls owls to the discharge co	e from sand holes, blo ediate bowls shall hav shall be of identical do blumn. Threaded conn	ow holes, ve vitra lesign for necting
for optimum performance a contain special workmansh	all be constructed from ASTM B584 Silice. They shall be free from defects and mand minimum vibration. Impellers are to the temporarily increase efficiency. The steel (or 416 SS). The impellers	ust be accurately cast, be standard product of the evishall be securely fas	machined, balanced, the pump manufacture stened to the bowl sha	and filed er and not off with
The suction bowl shall be p incorporated in the pump doing at the bottom for easy results.	provided with a non-soluble grease pack esign to protect this bearing from abrasi emoval of the bearing.	ed bronze bearing, and ves. The bearing housi	a bronze sand collar ng shall have a suffici	shall be ent open-
material in the suction bowl	arger shall (or shall not and intermediate bowls. Wear rings shall the impeller to provide adequate sealing	all have the minimum n	ractical clearance to the	ho
5. The bowl shaft shall be con	structed from ASTM A582 type 416 star	nless steel. It shall be p	precision turned, group	nd and

polished and shall be supported by water lubricated bronze bearings. or _____eptional fluted rubber bearings.

E. Column Assembly - Water Lubricated

- 1. Pump speeds up to 2200 RPM shall have intermediate column lengths and lineshaft bearing spacing not to exceed 10 feet. Pump speeds between 2200 RPM and 3600 RPM shall have intermediate column length and bearing spacing no greater than 5 feet.
- 2. Column pipe: the column pipe shall be grade A steel pipe with the ends machined with 8 threads per inch with 3/16" taper and faced parallel to butt against the centering spiders. Inside diameter of the pipe shall be such that the head losses shall not be over 5 feet per 100 feet of pipe, and shall weigh not less than __39_ lbs/ft. Pipe shall be connected with threaded sleeve type steel couplings.
- 3. Lineshaft shall be of ample size to operate the pump without distortion or vibration. Diameter of the shaft shall be such that it does not exceed the horsepower limitations indicated in the engineering section of the Goulds Catalog. Shaft shall be furnished in interchangeable sections not over ten feet in length, and shall be coupled with extra-strong threaded steel couplings machined from solid bar steel. Lineshaft shall be C1045 steel with a chrome spot surfacing for the bearing area. The chrome spot to be electroplated.
- 4. Bronze centering spiders of the drop-in type shall be furnished for shaft stabilization at each column pipe coupling. Bearings shall be fluted rubber retained in the spider by a shoulder on each end of the bearing.

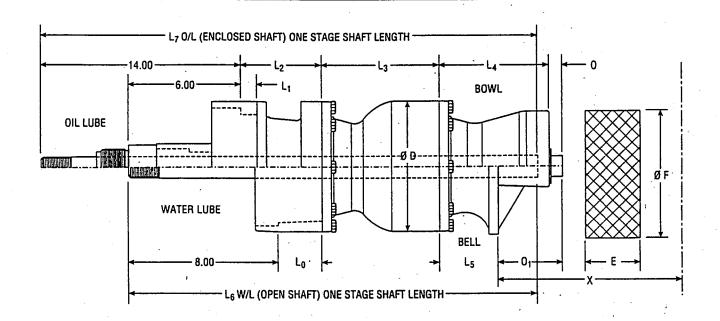
F. Discharge Head Assembly - Water Lubricated


- 1. Discharge head shall be of the high profile type and be a suitable base of high grade cast iron, ASTM A48-30, or fabricated steel. It shall be provided for mounting the motor with a discharge elbow having an above ground flanged discharge outlet for _______ inch standard pipe. The design shall have sufficient capacity to carry the combined weight of the column assembly. The design shall allow the top shaft to couple above the stuffing box. The head shall have a 1/2" NPT connection for a pressure gauge.
- 2. The stuffing box shall be cast iron and shall contain a minimum of five rings of packing. It shall have a pressure relief connection. The packing gland shall be a bronze split type secured in place with noncorrosive studs and nuts. The bearing shall be SAE660 bronze. A rubber slinger shall be secured to the shaft above the packing gland.

G. Suction Pipe and Strainer

The suction pipe shall be __O__ feet in length and shall have a minimum inside diameter and weight equal to that of the discharge column pipe. A suitable cone strainer of galvanized steel shall be provided having a free area of at least five times the flow area of the suction pipe.

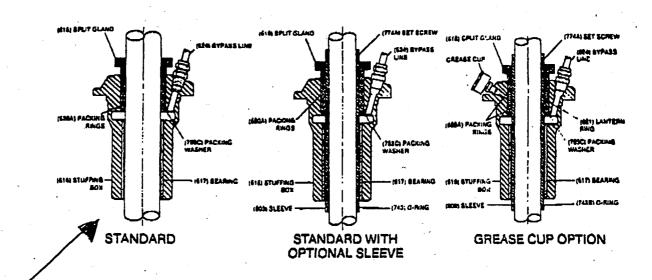
H. Electric Motor


The motor shall be a heavy duty squirrel cage induction type, NEMA design B, 1750 RPM vertical hollow shaft motor, with a non reverse ratchet to prevent reverse rotation of the rotating elements. A suitable thrust bearing shall be incorporated in the upper end of the motor adequate to receive the entire hydraulic thrust load of the pump unit plus the weight of the rotating parts under all conditions of operation. The motor shall be normal (or premium) efficiency with a WP-1 enclosure, 1.15 service factor, and suitable for use on a 460 volt, three phase, 60 cycle electric service.

Vertical Turbine Pumps Engineering Data

Effective January 1, 1997

Turbine Mechanical Bowl Data


	Model			В	owi As	sembl	y Leng	jth			,	Basket Strainer		Floor	Bowi	Bowl Shaft	Available		Suction Pipe	1st Stage Bowl Assembly Weight		Add'I Stage
	and Size	Lo	L ₁	L ₂	L ₃	L ₄	L ₅	L6	L ₇	0	. 01	(Opti	onai) F	Clearance	O.D. D	Dia.	Lineshaft Sizes	Pipe Size	Size	Open Shaft	Enclosed Shaft	Weight
>	11C	3.5	1.0	5.75	9.88	10.13	5.63	30.25	38.5	1.0	5.38	8.0	11.5	8.0	11.0	1.69	1.0-1.69	6,8,10	8,10	240 .	265	97
	11RA	4.13	2.13	5.75	8.0	NA	4.63	28.63	36.25	NA	6.0	6.88	11.25	8.13	11.6	1.69	1.0-1.69	6,8,10	NA	216	231	103
	11WA	3.5	1.0	5.75	8.75	10.13	5.63	29.38	37.63	1.0	5.50	8.0	11.5	9.5	11.0	1.69	1.0-1.69	5,6,8	. 8,10	229	254	90
• [12C	4.13	2.13	5.75	11.0	10.38	6.88	32.63	40.25	.88	4.38	5.5	12.75	8.0	11.75	1.69	1.0-1.69	6,8,10	8,10	263	295	124
	12RDH	4.13	2.13	5.75	11.25	9.5	8.0	33.25	40.88	2.5	4.0	5.5	12.75	13.0	11.6	1.94	1.0-1.94	6,8,10	10	275	300	129
	12FR	4.13	NA	8.25	12.5	9.13	8.0	33.75	43.88	2.75	NA	NA	NA	NA	11.75	1.94	1.0-1.94	10	10	255	320	129
	121	4.13	2.13	5.75	9.0	10.38	6.88	30.25	37.88	1.0	4.5	5.5	12.75	8.0	11.6	1.69	1.0-1.69	6,8,10	8	245	270	92
	12RA	4.13	2.13	5.75	9.0	9.75	6.88	29.88	37.5	1.0	3.88	5.5	12.75	8.0	11.6	1.69	1.0-1.69	6,8,10	- 6	240	265	95
	12RJ	4.13	2.13	5.75	9.6	10.38	6.88	30.81	38.5	1.0	4.5	5.5	12.75	8.0	11.6	1.69	1.0-1.69	6,8,10	8	250	275	95
[13C	4.13	NA	5.75	11.13	10.13	5.56	32.0	39.63	1.0	5.56	7.5	14.25	8.0	12.38	1.94	1.0-1.94	8,10	10	315	380	150
	13RA	3.13	3.0	9.0	9.5	NA	7.0	31.38	43.25	NA	5.5	7.5	14.25	7.63	13.38	1.94	1.0-1.94	8,10,12	NA	374	459	164
	14RDH	3.13	3.0	9.0	13.25	10.75	10.75	37.00	49.88	5.75	5.75	13.5	15.5	18.0	13.25	2.19	1.19-2.19	10,12	12	405	490	169
ĺ	14H	3.88	NA	13.5	13.63	11.0	11.0	37.63	53.25	3.75	3.75	11.5	14.75	12.0	14.0	2.19	1.19-2.19	10,12	10	493	568	195
[14RJ	3.13	3.0	9.0	11.5	10.5	6.25	31.75	43.63	1.0	5.25	9.5	15.0	10.0	13.63	1.94 ,	1.0-1.94	8,10,12	10	390	475	155

(All dimensions are in inches and weights in lbs.) Continued on next page.

25.1 October 1, 1986 (Sup. 6/1/82)

ATTN: JOE

Stuffing Box Sectionals

Type of Packing	Applications	Pressure Range	Temperature Range	Comments
Graphite & Petrotatum Impregnated Non Abestos Yarn	General Services	300#	Ambient to	,
Lead Foil	High Temperature		250°F to 450°F	Shut hardiacing or a shaft sleeve is recommende

For Abrasive Services, refer to factory.

Shaft or Sleeve Size (2)	Numb Packing	* . *	Packing Required	Box Depth Standard With One Lantern Ring		
	Standard	With Lantern Ring	Size			
1"	6	4	%" square	21/2"		
13/16"	6	4	%" square	21/2"		
1½"	6	4	%" square	21/3"		
111/15"	6	4	%" square	21/2"		
11\$/16"	6	4	%" square	2%"		
244"	6	4	%" square	21/4"		
27/16"	6	4	¾" square	2%"		
211/46"	6	4	1/3" square	31/3"		
215/16"	6	4	%" square	3¼"		

NOTES:

- 1. Stuffing box and lineshaft bearing should be sized alike.
- 2. Sleave is two (2) sizes larger than shaft.

VERTICAL PREMIUM EFFICIENT

WPI HOLLOSHAFT & SOLID SHAFT 230, 460, & 575 VOLTS; 3 PHASE, 60 HERTZ HIGH THRUST ENGINEERING DATA

 SECTION:
 504

 PAGE:
 22

 EFFECTIVE:
 01-15-93

 SUPERSEDES:
 PG 8.2

 DATED:
 11-15-92

===														
+ 1				• *				:	CURR	ENT (AMPS)	TORQUE	}		
	RF	M	% [EFFICIEN	ICY	% P(OWER FA	ACTOR	46	OVOLTS	FULL LOAD	LOCKED	PULLOUT	
											TORQUE AT	(STARTING)	BREAKDOWN	1
	NO	FULL	FULL	3/4	1/2	FULL	3/4	1/2	FULL	LOCKED	FULL LOAD	···	<u> </u>	NEMA
<u>I.P.</u>	LOAD	LOAD	LOAD	LOAD	LOAD	LOAD	LOAD	LOAD	LOAD	STARTING	SPEED		F FULL LOAD	CODE
5	900	880	88.4	88.7	87.3	71.4	84.5	52.5	7.4	48	30	130	205	<u> </u>
4.00	1800	1760	91.2	91.6	91.0	85.9	83.1	76.1	9.3	63.5	22	175	215	H
-1/2	1200	1170	89.5	90.1	89.3	80.4	75.1	64.5	9.8	68	34	150 125	205	J
	900 1800	875 1760	88.6 91.2	89.3 91.9	88.5 91.6	73.3 86.3	88.7 83.8	55.2 77.1	10.8 12.3	63.5 78	45 30	165	200	G
10	1200	1170	88.8	89.7	89.2	81.4	75.8	65.2	13.0	91	45	150	200	j
10	900	875	88.6	89.9	89.8	75.9	70.7	60.6	13.9	81	60	125	200	Ğ
	1800	1765	91.7	92.2	91.4	81.9	78.2	69.4	18.7	116	45	160	200	G
15	1200	1170	90.5	91.4	91.2	81.5	76.6	66.7	19.1	136	67	140	200	J
	900	875	87.9	89.1	88.7	74.0	67.4	55.9	21.6	116	90	125	200	G
	3600	3525	90.5	91.4	91.1	88.0	87.4	83.4	23.5	145	30	130	200	G
20	1800	1770	92.4	93.3	93.2	85.0	83.7	78.4	23.8	145	60	150	200	Ġ
	1200	1170	90.5	91.7	91.7	82.2	77.6	68.0	25.2	200	90	135	200	J
	900	880	90.1	91.1	90.8	75.1	70.5	60.1	27.7	145	119	125	200	G
	3600	3530	91.2	92.1	91.8	87.1	86.2	81.6	29.4	182.5	37	130	200	G
25	1800	1770	93.0	93.9	93.9	83.8	81.6	74.8	30.0	182.5	74	150	200	G
	1200	1175	90.9	92.0	92.0	85.0	83.4	77.9	30.3	200	112	135	200	G
	900	880	90.3	91.6	91.7	76.8	73.0	63.7	33.8	182.5	149	125	200	' G
	3600	3520	90.7	92.0	92.1	88.2	87.4	83.1	35.1	217.5	45	130	200	G
30	1800	1765	92.9	94.0	94.2	84.2	82.5	76.4	35.9	217.5	89	150	200	G
	1200	1180	91.5	92.6	92.6	85.5	83.8	78.3	35.9	258	134	135	200	G
	900	880	90.9	92.0	91.7	76.1	70.8	59.7	40.6	217.5	179	125	200	G
	3600	3520	92.1	93.3	93.4	89.1	88.5	84.7	45.7	290	60	125	200	G
40	1800	1780	93.2	93.7	93.3	87.2	86.4	82.2	46.1	290	118	140	200	G
	1200	1175	91.5	92.8	93.0	84.6	82.3	75.4	48.4	336	179	135	200	H
	900	880	91.2	92.5	92.6	77.4	72.8	62.4	53.1	290	239	125	200	G
:	3600	3545	90.7	90.8	89.4	85.3	83.9	78.4	60.5	362.5	74	120	200	G
50	1800	1780	93.9	94.4	94.0	87.6	88.1	80.6	56.7	36.5	148	140	200	G
	1200 900	1175 880	92.5	93.7	93.9	86.2	84.1	77.8	58.7	429	223	135	200	H
	3600	3550	91.1 91.4	92.1 91.8	92.0 90.8	79.5 87.7	75.2 87.0	65.5 83.1	64.6 70.1	362.5 435	299	125	200	G
60	1800	1780	94.1	94.7	94.5	87.9	86.7	81.7	67.9	435	178	140	200	G ·
-	1200	1175	92.4	93.4	93.4	86.8	84.9	78.9	70.1	478	268	135	200	H
•.	900	880	91.7	92.7	92.6	80.3	76.3	67.1	76.4	435	358	125	. 200	G
	3600	3540	91.6	92.4	92.0	88.1	88.5	88.1	87.0	542.5	111	105	200	G
75	1800	1775	94.1	94.9	94.9	88.0	86.9	82.0	84.8	542.5	222	140	200	Ğ
	1200	1175	93.4	94.3	94.4	87.8	86.4	81.7	85.6	636	335	135	200	H
	900	890	93.7	94.4	94.2	80.1	77.2	69.1	93.6	542.5	443	125	200	G
	3600	3535	92.1	93.1	93.0	89.1	89.4	87.2	114.1	725	149	105	200	G
100	1800	1780	94.6	95.2	95.0	87.0	86.1	81.5	108.9	725	295	125	200	G
	1200	1185	93.4	94.2	94.0	84.5	82.1	75.1	118.6	792	443	125	200	H -
	900	890	93.8	94.5	94.4	80.2	76.9	68.2	124.5	725	591	125	200	G
	3600	3545	92.9	93.5	93.1	88.9	88.1	93.9	141.7	907.5	185	100	200	G
> 125 ·	1800	1780	94.9	95.5	95.4	87.0	86.0	81.4	141.7	907.5	369	110	200	G .
	1200	1190	94.0	94.6	94.3	84.0	80.8	72.6	148.2	1113	553	125	200	H
	3600	3545	93.1	93.9	93.8	89.9	89.2	85.4	167.8	1085	222	100	200	G
150	1800	1785	95.5	95.7	95.2	85.8	82.8	75.1	171.2	1085	443	110	200	G
	1200	1185	93.7	94.8	95.1	86.8	85.6	80.8	172.7	1180	665	120	200	H
200	3600	3560	93.4	93.7	92.8	89.1	88.3	84.4	224.9	1450	295	100	200	G
	1800	1780	95.5	95.9	95.7	87.4	85.5	79.3	224.3	1450	591	100	200	G
250	3600	3550	93.4	93.9	93.4	89.2	88.4	84.3	280.8	1825	370	70	175	G
	1800	1780	95.1	95.8	95.8	86.7	84.8	78.4	283.8	1825	738	80	175	G

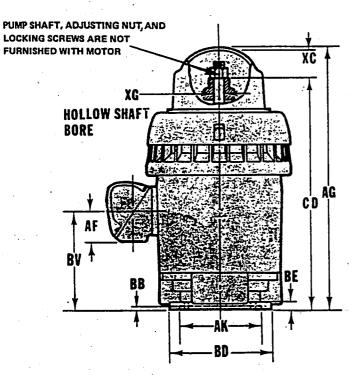
Efficiency & power factor values listed above are representative values. For guaranteed and certified values, refer to company.

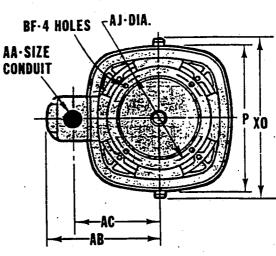
The code letter is an indication of the locked rotor K.V.A. in accordance with the National Electrical Code.

When performance values have been quoted, they should be shown on the order.

For data not listed, refer to company. Data subject to change without notice.

Extra high thrust may decrease typical efficiency below values listed above.




VERTICAL MOTORS

DIMENSIONS

FRAMES 324TP THRU 405TPA -- TYPES RU, RUE (DRIPPROOF) -- WEATHER PROTECTED TYPE 1

ALL DIMENSIONS ARE IN INCHES

T	BASIC FRAME	p•	AA	AB	AC	AF	AG	BE	BV	CĎ	xc	хо
Т	320	18-3/8	3	15-3/16	. 11-5/8	4	32-5/8	11/16	11-1/16	28-7/32	4-7/32	21
\neg	360	18-3/8	3	15-3/16	11-5/8	4	35-9/16	11/16	14	31-5/32	4-7/32	21
\top	400	20-1/2	3	16-3/8	12-3/4	4	41-5/8	3/4	18-1/8	36-15/16	4-9/16	23-3/8

		T .		BD			BRACKET
FRAME	AJ	AK	88	MAX.	BF	XG	PART NO.
324, 326TP	14-3/4	13-1/2	1/4	16-1/2	11/16	1-9/16	192169
324, 326TPH	9-1/8	8-1/4	3/16	12	7/16	1-9/16	192163
364, 365TP	14-3/4	13-1/2	1/4	16-1/2	11/16	1-9/16	192169
364, 365TPA	9-1/8	8-1/4	3/16	12	7/16	1-9/16	192163
404, 405TP	14-3/4	13-1/2	1/4	16-1/2	11/16	1-7/8	188662
404, 405TPA	14-3/4	13-1/2	1/4	20	11/16	1-7/8	188664

^{*} Largest motor width.

SFFECTIVE:

:UPERSEDES:

Conduit box opening may be located in steps of 90 degrees, Standard as shown with conduit opening down.

All rough casting dimensions may vary by 1/4" due to casting variations.

	AK DIMENSION			
TOLERANCES	8-1/4	13-1/2		
Face runout	.004 F.I.R.	.007 F.I.R.		
Permissible eccentricity of mounting rabbet	.004 F.I.R.	.007 F.I.R.		
AK dimension	+.003	+.005		

Printed in U.S.A.

HE

U.S. ELECTRICAL MOTORS DIVISION EMERSON ELECTRIC CO.

5201 Woodmere Dr. • Bakersfield, CA • 93313-2770 JOB TICKET

Toll Free (800) 445-9914 • Fax (661) 834-2550 email: welenco@welenco.com

OPERATOR(S):	工111.)(CHARGE TO:	While	·5 C.	ou M	· · · · · · · · · · · · · · · · · · ·	WELL NOs:
JOB DATE:	12.21.00	INVOICE ADDRESS:					Alice
CUSTOMER P.O.:	194759				PHONE:		March 18th
BASE:	MEC	CITY:			STATE:	ZIP:	<u> </u>
			A16.200 Cm		Bene	NU	
TRUCK No.:	1.10	REQUESTED BY:		Dyne	•		

CONDITIONS OF THIS CONTRACT

To welenco, inc.:

You are hereby requested to furnish the service and materials herein set forth upon the following terms and conditions:

The undersigned, as customer, agrees to pay you for the services and/or materials ordered hereunder at the office of welenco, inc., Bakersfield, California. Should any account not be paid within the term fixed by the invoice, a finance charge

will be charged at the rate of 1.5% per month, 18% per annum from the date of such invoice. In case of default, Customer agrees that venue is in the court of the seller, and to pay all attorney's fees and court costs.

Customer certifies that it is the owner of the well on which the work herein ordered is to be done or that it has the full right and authority to order such work done on such wells. Customer further agrees that the General Terms and Conditions set forth on the reverse side of this document constitute the entire agreement and that no employee of your company is authorized to alter the terms hereof. I have read and understand the terms of this contract and represent that I am authorized to sign the same as agent of the customer.

DESCRIPTION PE MISCELLANEOUS S Service Charge 1 ST Run/Day: \$ Service Charge Run/Day: \$ Excess Standby Time Hrs. (3 Free Hours) Excess Mileage Charge Miles (100 Free Mi.)	SERVI	\$ 520	Spinner (#6) Spinner Stops #	\$ /ft \$ ea	+		DESCRIPTION WELL DEBA		RICE	AMT		
Service Charge 1 ST Run/Day: \$ Service Charge Run/Day: \$ Excess Standby Time Hrs. (3 Free Hours) Excess Mileage Charge \$	SERVI	\$ 520	Spinner Stops #		+		WELL DEDY.	TD CID	DYITA	•		
Service Charge Run/Day: \$ Excess Standby Time Hrs. (3 Free Hours) Excess Mileage Charge \$				Spinner Stops # \$ ea \$			WELL REPAIR SERVICES					
Excess Standby Time Hrs. (3 Free Hours) Excess Mileage Charge			DESCRIPTION	PRICE		AMT	Swage Labor Charge Hrs.	\$	50 /hr	\$		
Hrs. (3 Free Hours) Excess Mileage Charge		\$	Depth Specific Samples	\$ ea	1 \$		Swage Mast Charge	1				
CACCOS WHICAGO CHAIGO		\$	No.:Full Decon		_		Hrs.	\$	70 /hr	\$		
		\$	Depth Specific Samples No.: Rinse Only	\$ ea	1 \$		SlimHole Patch Charge	\$	ea	\$		
		A	VIDEO SE	RVICES			Patch Charge #					
ASCII Diskettes #\$		\$	Video Operation Charge	\$ /hr	r \$		5' Annealed Liner	\$	ea	\$		
DXF Diskettes # \$		\$	Hrs1st well #		-		Patch Charge # 5' Stainless Steel Liner	\$	ea	\$		
LOGGING SERV	VICES	}	Video Operation Charge Hrs2nd well #	\$ /hr	\$			\$				
Electric\$	/ft	\$	Video Operation Charge	\$ /hr			Patch Welding #		ea	<u> </u>		
Lateral\$	/ft	\$	Hrs3rd well #	φ /fir	***		EnerJet # ft 1st V	Vell		\$		
Induced Polarization\$	/ft	\$	Video Operation Charge Hrs4th well #	\$ /hr	\$		EnerJet # ft 2nd Well			\$		
Single Induction\$	/ft	\$		_	+			\$		\$		
Dual Induction \$	/ft	\$	Video Operation Charge Hrs5th well #	\$ /hr	\$		ì	\$		\$		
Micro-Resistivity\$	/ft	\$	FloVision(#1) ft	\$ /ft	t \$		ADDITIONA	L SEI	RVICE	ls		
GR-Neutron \$	/ft	\$	FloVision(#2)ft	\$ /ft	t \$		Project Price			\$		
Gamma Ray\$	/ft	\$	FloVision Stops #	\$ ea	1 \$		(✓ Check Appropriate Service	\$ \$		\$		
Caliper \$	/ft	\$	SlimHole Camera	\$ ea	\$			\$		\$		
Borehole Geometry\$	/ft	\$	#Wells		-			\$		\$		
Temp/FR \$	/ft	\$	SideScan Camera # Wells	\$ ea	\$			\$		\$		
Sonic \$	/ft	\$			+-		<u> </u>	\$		\$		
CBL \$	/ft	\$	Hemi-Scan Camera #Wells	\$ ea	a \$		SUB TOTAL:	\$		\$		
Drift-Pac\$	/ft	\$ 1500	Color Charge		\$		SALES TAX:	\$		ф <u>е</u>		
BHTV \$	/ft	\$	#Wells	Į.	3 \$		JOB TICKET TOTAL:	4		2025		
Water Quality Log \$	/ft	\$		14	Ц							
Nitrate \$	/ft	\$	REMARKS: DC.	01		P _a ,						
Guard \$	/ft	\$										
Spinner(#1)\$	/ft	\$										
Spinner(#2)\$	/ft	\$										
Spinner(#3)\$	/ft	\$				г						
Spinner(#4) \$	/ft		I certify the above work ha		forn	ned:	If paid on site: CHE	CK#				
Spinner(#5)\$	/ft		AGENT:	1//	,,		DA ^r	ГЕ:	,	; ——		

GENERAL TERMS AND CONDITIONS

IN CONSIDERATION OF THE PRICES HEREINAFTER SET OUT, IT IS UNDERSTOOD THAT THE SERVICES OFFERED BY US ARE TO BE PERFORMED ONLY UNDER THE FOLLOWING TERMS AND CONDITIONS:

- 1. Terms of Payment. Terms of payment are net cash 30 days following Invoice date. Finance charge at 1.5% per month, 18% per annum will be charged on invoices unpaid 60 days after invoice date. All prices are exclusive of any Federal, State or other taxes on the sale or use of the merchandise and services listed, which taxes will be added to quoted prices where applicable. In case of default, Customer agrees that venue is in the county of the seller, and to pay all attorney's fees and court costs.
- 2. A reasonable attempt will be made by us to get from the highway to the location and back again under our own power. If tractors or other types of equipment or services are required to give us access to or return from the well location, same will be provided by the customer at his expense. On jobs where our equipment is transported by a conveyance belonging to or arranged for by the Customer, the Customer shall be responsible for the undamaged and safe return to the point of embarkation of all our equipment.
- 3. We endeavor to design and maintain our equipment to safety service properly drilled and conditioned wells. We carry public liability and property damage insurance. As there are so many conditions in and around wells which are uncertain and unknown and not subject to our control, we can neither guarantee the results nor be liable for injuries to property or persons nor for loss or damage arising from the performance of our services or resulting therefrom.
- 4. In the event any of our instruments or equipment is lost in the well, customer shall either recover same without cost to us, or (unless instrument Protection Charge has been purchased) pay for such instruments or equipment. In case it is necessary for Customer to "fish" for any of our instruments or equipment, Customer assumes the entire responsibility for such operations, but we will, if so desired by Customer, without any responsibility or liability on our part, render assistance in an advisory capacity for the recovery of such equipment and instruments. None of our employees is authorized to do anything other than advise and consult with Customer in connection with such "fishing" operations and any "fishing" tools furnished by us are furnished solely as an accommodation to the Customer, and we shall not be liable or responsible for any damage that Customer may incur or sustain through their use by reason of any advice or assistance rendered to Customer by our agents or employees, irrespective of cause.
- 5. Notwithstanding the provisions of Paragraph 4 hereot, if Customer chooses to purchase the Instrument Protection Charge (which is only offered when well conditions are normal), which choice must be exercised before operations begin. Customer is relieved of liability to pay for repair costs to subsurface equipment (which shall mean the cablehead and all equipment below the cablehead) damaged by recovery operations and replacement costs of subsurface equipment lost in the well. The protection to Customer given by the Instrument Protection Charge is only effective once Customer has made every reasonable effort to recover the equipment lost. A reasonable lishing effort is at least three complete attempts to reach and recover the equipment lost not counting any attempt to recover lost cable. Welenco in its discretion may choose not to provide the protection given by the Instrument Protection Charge when it considers the well conditions to be other than normal. The Instrument Protection Charge does not cover damage to equipment in other than normal well conditions.
- 6. In accepting an order to perform or attempt to perform any service involving the use of radioactive material, Welenco does so with the understanding that we do not guarantee results, and Customer agrees that we shall not be liable or

- responsible for injury to or death of persons or damage to property (including but not limited to injury to the well), or any damages whatsoever, irrespective of the cause, growing out of or in any way connected with our use of radioactive material. Customer acknowledges that he is aware of the fact that radioactive sources used in logging are potentially dangerous to humans and animals; should the source be lost in the well bore, special precautions must be taken in fishing in order that the container of the source is not broken or damaged; and the source, if not recovered, must be isolated by cementing it in place or by some other appropriate means that is in compliance with the policies of the applicable regulatory agencies. Customer shall absolve and hold Welenco, its agents, servents, officers and employees harmless against all loss, costs, damages and expenses incurred or sustained by Customer or any third party, irrespective of the cause including negligent acts or omissions by Welenco, its agents, servants, officers or employees, resulting from any such use of radioactive material. Pursuant to regulations established by the Arizona Radiation Regulatory Agency, when services are undertaken in that state which require the use of radioactive materials, a written agreement must be entered into between Welenco and Customer which specifies procedures to be carried out in the event a radioactive source is lodged or lost in a well bore.
- 7. In making any interpretation of logs, our employees will give Customer the benefit of their judgment as to the correct interpretation. Nevertheless, since all interpretations are opinions based on inferences from electrical or other measurements, we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not be liable or responsible for any loss, costs, damages or expenses incurred or sustained by Customer resulting from any interpretation made by any of our officers, agents or employees. Welenco does not warrant or guarantee the accuracy of log data, specifically including (but without limitation) the accuracy of log data transmitted by electronic process, and, Welenco will not be responsible for accidental or intentional interception of such data by third parties.
- 8. If Customer is not the sole owner of well in respect of which Welenco is requested to provide services, but shares ownership with one or more third parties, or is acting as agent for these parties. Customer represents, warrants and covenants that Customer is the duly constituted and authorized agent of each of such third parties with full powers to represent the interests thereof to the same effect and extent as if the Customer were sole owner.
- All the preceding terms and conditions shall also apply in favor of any manufacturer or supplier of equipment that we may use in the well.
- 10. Information derived by us in rendering our services will be held in strict confidence and will be released only upon approval of the Customer.
- 11. The Customer shall have a responsible representative present to issue orders relative to the service or services to be performed
- 12 Our cables, bridles and downhole instruments are designed to operate under conditions normally encountered in the well bore. Under extreme conditions, they may be seriously damaged by corrosive gases, chemicals or other substances in the well bore. Customer shall pay for equipment damaged beyond repair by such causes.
- 13. No employee is empowered to alter the above terms and conditions

FAILURE TO ENFORCE ANY OR ALL OF THE ABOVE TERMS AND CONDITIONS IN A PARTICULAR INSTANCE OR INSTANCES SHALL NOT CONSTITUTE A WAIVER OF, OR PRECLUDE SUBSEQUENT ENFORCEMENT OF, ANY OR ALL OF THE ABOVE TERMS AND CONDITIONS.