
WELL COMPLETION REPORT FOR NEARBY PRODUCTION WELL: APPLICABLE FOR TESSA EAST MWA

REDFIELD/TESSA PW-1 (WEST) AND PW-2 (EAST) WELL CONSTRUCTION AND TESTING FINAL REPORT

Redfield/Tessa PW- 1 (West) and PW- 2 (East) Well Construction and Testing Final Report November 2000

WASHOE COUNTY

DEPARTMENT OF WATER RESOURCES

4930 ENERGY WAY RENO, NEVADA 89502

Department of

Table of Contents

Summary and Conclu	isions	Page 3
Introduction		Page 4
Drilling Operations		Page 5
Geology/Hydrolgy		Page 6
Well Construction		Page 7
Well Development		Page 8
Well Testing Summa	ry	Page 9
Water Quality		Page 11
Appendix		
А	Drillers Logs Geologist Logs	Page 12

А.	Drillers Logs, Geologist Logs	Page 12
B.	Test Pumping-Data and Graphs	Page 13
C.	Water Quality	Page 14
D.	Cost Proposal	Page 15
E.	List of Available information	
	At Washoe County Department	
	Of Water Resources	Page 16

LIST OF TABLES AND FIGURES

Table 1.Well Construction Details

Table 2.Well Efficiency at Various Pumping Rates

 Table 3.
 Step Drawdown Test, PW-1 (west), Data Summary

Table 4.Step Drawdown Test PW-2 (east), Data Summary

Figure 1. Location Map

Figure 2. Construction Details for MW-1 (west)

Figure 3 Construction Details for PW-1 (west)

Figure 4 Construction Details for MW-2 (east)

Figure 5 Construction Details for PW-2 (east)

Figure 6 Step Drawdown Test, PW-1 (west) Total Drawdown Graph

Figure 7 Step Drawdown Test, PW-2 (east) Total Drawdown Graph

Figure 8 Constant Discharge Test, PW-1 (west) Drawdown Graph

Figure 9 Constant Discharge Test PW-1 (west) Recovery Graph

Figure 10 Constant Discharge Test PW-2 (east) Drawdown Graph

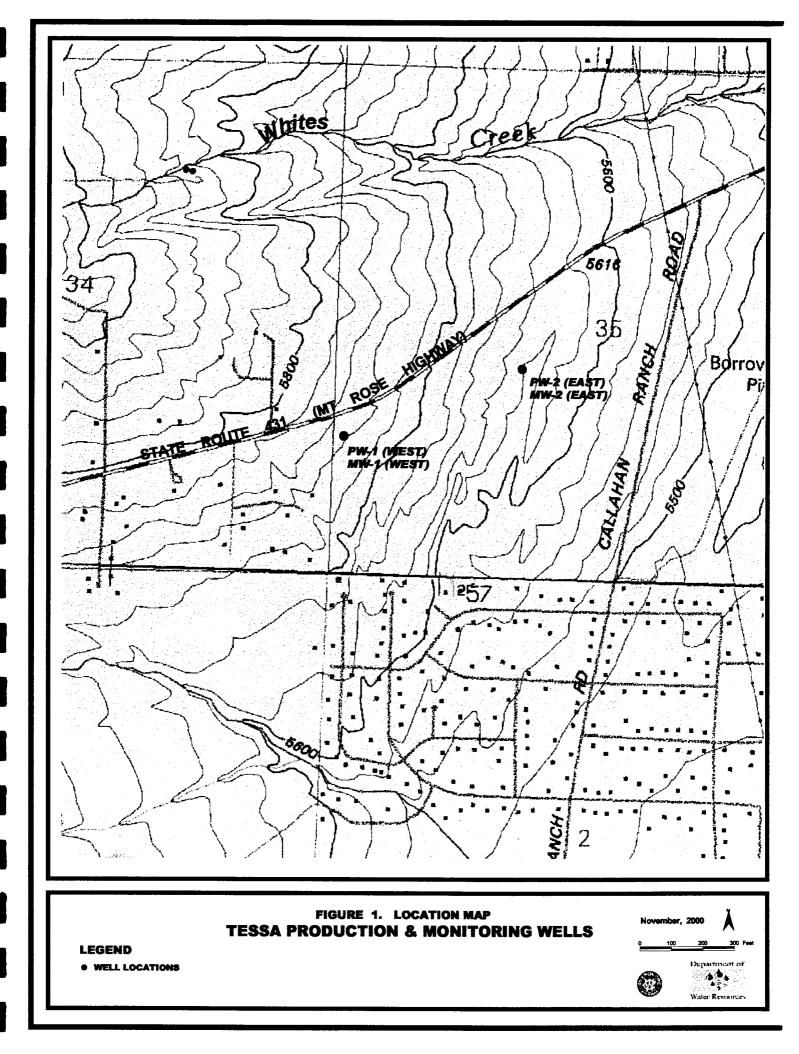

Figure 11 Constant Discharge Test PW-2 (east) Recovery Graph

Figure 12 Drawdown at Simulated Pumping Rates PW-1 (west)

Figure 13 Drawdown at Simulated Pumping Rates PW-2 (east)

SUMMARY AND CONCLUSIONS

- Galena Water Enterprises (GWE), the owner of water rights and property adjacent to the State Route 431 (See Location Map, Figure 1.) consulted with Washoe County to determine what requirements would be necessary to develop the property. Washoe County told GWE that the paper water rights would have to be backed up by "wet water." Backing up the rights would require the development of at least two municipal supply wells that would be accepted by the County. Galena Water Enterprises chose to fund some County Hydrologist staff time to assist in the design, construction supervision and test pumping of wells drilled.
- 2. Galena Water Enterprises, acting through Randy Bowling of Randy Bowling Consulting, contracted with Layne Christensen Company to construct two municipal supply wells that would meet County standards for construction. The Contract was signed May 31, 1999.
- 3. Drilling began at Site No. 1 (west) on June 9, 1999. Because the County desired to determine the depth to bedrock in that area, the County participated in the extra costs associated with drilling the test hole deeper than the 700 feet authorized by the Contract between Layne and GWE. Ultimately, the test hole was drilled to a depth of 1000 feet and terminated in fractured volcanics. The test hole was completed with 2-inch steel casing to a depth of 1000 feet. The test well was completed June 24, 1999.
- 4. Production Well No. 1 (west) was completed, including air-lift development on August 14, 1999. The well was constructed with a 24-inch diameter surface casing to 100 feet and 14-inch casing and screen to 780 feet (detailed construction diagram included in this report). Static water level was around 280 feet below ground surface.
- 5. Drilling of the test hole at site No. 2 began on June 24, 1999. Difficulty in drilling delayed completion of test hole No. 2 until October 14, 1999. Test hole No. 2 was drilled and cased with 3-inch casing to a depth of 720 feet.
- 6. Difficulty in drilling and loss of bit in the borehole delayed completion of Production Well No. 2 (east) until March 25, 2000. Well No. 2 was constructed with a 24-inch diameter surface casing to 157 feet and 14-inch diameter casing and screen to 735 feet (detailed construction diagram included in this report). Static water level was about 220 feet below ground surface.
- 7. A series of aquifer stress tests were run on each well. An initial step-drawdown test was followed by a 72-hour constant discharge test on each well. The testing indicated aquifer transmissivities of about 9,800 gpd/ft for PW 1 and about 7,400 gpd/ft for PW 2. Well efficiencies were good with the efficiency for each well

being above 80% at the recommended design capacity. Storage coefficients ranging from 0.001 to 0.1 suggested unconfined or semi-confined aquifers. There were no measurable interference effects between the wells during testing.

8. Based on the assumption that the wells will not pump continuously for more than 30 days, and the County generally does not like pumping levels to drop below the top of the screened interval, the recommended pumping rates for the wells are:

PW 1	650 gallons per minute
PW 2	850 gallons per minute

The wells could be rated about 100 gpm higher for short-term peak pumping if equipped with a variable speed pump that could be adjusted to respond to a maximum recommended pumping level. The variable speed pump could pump the higher rate until the pumping level approaches the top of the screened interval.

- 9. Sand content during testing showed both wells meet County criteria for sand production (less than 5 parts per million by volume).
- 10. Water quality analyses showed water from both wells meet all current drinking water standards. In general, the water quality is excellent, with total dissolved solids below 200 parts per million in each well.
- 11. Both wells met standards for plumbness and alignment.

INTRODUCTION

Tessa Production Well No. 1 (west) and No. 2 (east) are located on the Mount Rose alluvial fan near the intersection of Mount Rose Highway (State Route 431) and Callahan Ranch Road. Figure 1 is a location map showing the approximate location of the wells.

Layne Christensen Company constructed each of the wells and the contract for construction was between Layne and Galena Water Enterprises. Randy Bowling of Randy Bowling Engineering was hired by Galena Water Enterprises to manage the contract.

Galena Water Enterprises wanted to insure the wells would meet County standards for construction and eventually be accepted by the County as municipal water supply wells. Galena Water Enterprises provided Washoe County with \$23,000.00 in exchange for County supervision of some of the construction aspects of the wells and the data collection during test pumping of the wells. As a result, County staff was directly involved in the construction and testing process. The result was that the wells meet current County standards and would be acceptable as municipal supply wells.

DRILLING OPERATIONS

Test drilling and well construction began June 9, 1999 and was not completed until March 25,2000. The contract was for a test hole and monitoring well at each site. Test holes and wells were named: Test Hole No. 1 (TH-1), Production Well No. 1 (PW-1), Test Hole No. 2 (TH-2) and Production Well No. 2 (PW-2). The No. 1 site was the west location and the No. 2 site was the east location. Difficulties in drilling, loss-circulation problems, twisting off a bit in the borehole and equipment changes all contributed to delays in construction of the wells. Following is a summary of the drilling progress:

June 9, 1999	Drilling of a test hole began at Site No. 1 (TH-1, west).
June 21, 1999	TH-1 was completed, developed and cased as a 2-inch monitoring well to a total depth of 1000 feet.
June 24, 1999	Changed from mud rotary rig to air rotary rig to drill TH-2 (east) Drilling problems prevented completion of TH-2. Rig was pulled off August 23, 1999.
July 23, 1999	Mud rotary rig began drilling production well at PW-1 (west).
August 10, 1999	Well completed, air-lift development begins.
August 14, 1999	Air-lift development completed at PW-1 (west).
September 28,1999	Different rig brought in to drill TH-2
October 14, 1999	TH-2 construction and development completed. Completed with 3-inch casing.
October 14, 1999	Drilling began for PW-2 (east).
October 25, 1999	Conductor casing set and cemented
November 5, 1999	Completed first pass with 17.5 inch bit
November 15, 1999	Twisted off reamer at about 130 feet.
January 25, 2000	Abandoned attempts to fish out or mill-up stuck bit. Abandoned hole.
January 30, 2000	Began drilling new hole.

March 11, 2000 Set and cemented surface casing.

March 25, 2000 Finished construction and air-lift development of Production Well No. 2 (east).

HYDROLOGY

The source of groundwater for the area is recharge from precipitation falling primarily in the Carson Range. Precipitation is influenced greatly by oroclinal effects from the Carson Range, which creates a strong rain-shadow effect. Annual precipitation, falling primarily as snow, averages 58 inches at higher elevations in the Carson Range (based on 19 year average at Marlette Lake), whereas the average annual precipitation in Reno, falling primarily as rain, is only about 7 inches (based on 54 year average at Reno/Tahoe International Airport; Desert Research Institute, 2000). Steamboat Creek is the principal drainage within the area and is a major tributary to the Truckee River. The majority of runoff comes from the east flank of the Carson range due to snowmelt with the predominant tributaries in the area being Galena Creek, Whites Creek, and Thomas Creek. The Steamboat Springs geothermal area is located on the northeastern flank of the Steamboat Hills. Groundwater is found at ground surface near the Serendipity Fault to depths of greater than 300 feet near the north flank of the Steamboat Hills. The general groundwater flow direction in the alluvial aquifer is toward the east.

GEOLOGY

The Tessa 1 and 2 wells are located along the southern margin of the upper portion of an alluvial basin known as the Mount Rose Fan. The geology of the area was mapped by Bonham and Rogers (1983). The primary basement bedrock is fractured Cretaceous granodiorite (Kg) which is prominent in the Carson Range and the Virginia Range. These plutonic rocks were intruded into older sedimentary and volcanic rocks (pKm) that are deformed, regionally metamorphosed, and further thermally metamorphosed near granodiorite contacts. Overlying the basement rocks is the Tertiary Kate Peak Formation (Tkf, Tkb, Tku) which consists of weathered, faulted, and hydrothermally altered andesite and basalt flows, flow breccias, intrusive bodies, and tuff-breccias. Quaternary alluvial fan deposits of the Mount Rose Fan Complex are derived primarily from the east flank of the Carson Range and the west flank of Steamboat Hills. These deposits consist of generally sandy cobble to boulder gravel sediments but contain discontinuous layers of silt and clay. The alluvial deposits and fractured volcanics are the water primary source for Washoe County and domestic wells.

At least three prominent fault systems that trend north (range front system), northeast, and northwest occur in the area. North trending faults along Callahan Ranch Road, evident in west-facing and east-facing scarps in alluvial deposits, indicate recent (<10,000 years before present) seismic activity. The Tessa 1 well is located on the western margin of this

fault swarm while the Tessa 2 well is situated within the fault swarm. This faulting has produced compartmentalization of groundwater flow within the alluvial aquifer as indicated by variable hydraulic gradients (0.1 to 0.04 ft/ft). The prominent north-trending Serendipity Fault, located approximately 2000 feet east of the Tessa 2 well, produces the greatest hydraulic gradient and appears to act as a barrier to groundwater flow.

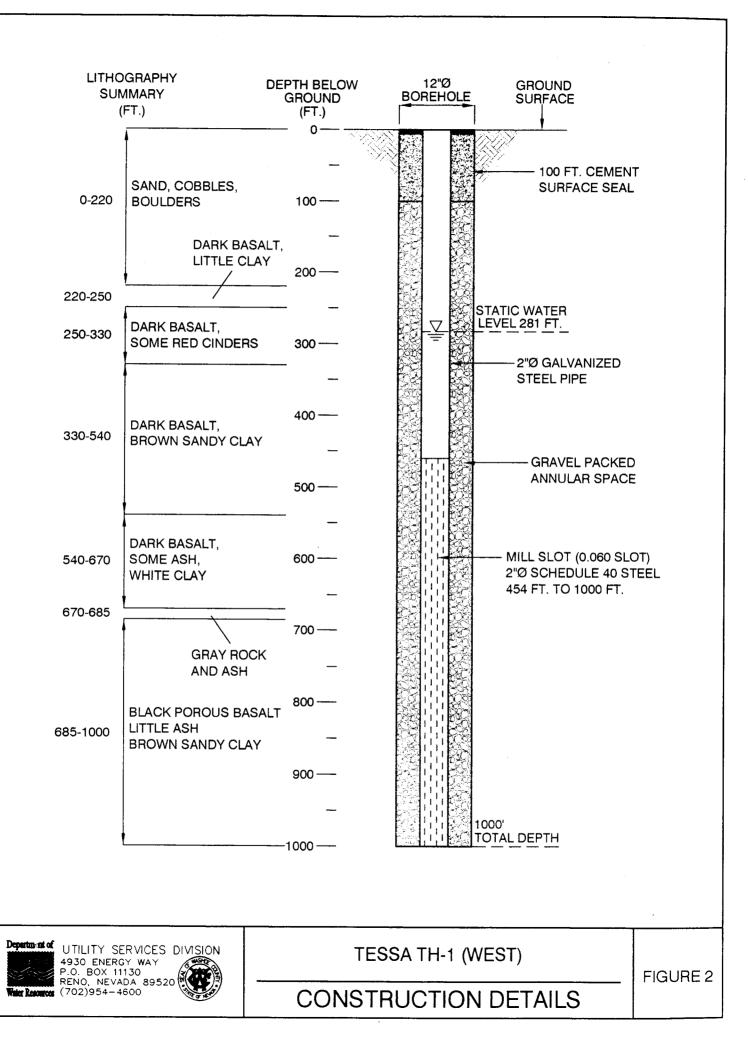
Test hole TH-1 near the Tessa 1 well was drilled to a total depth of 1000 feet and test hole TH-2A near the Tessa 2 well was drilled to a total depth of 720 feet. Logs for these test holes supplied by the drilling company (Layne Christensen) provided detailed descriptions of the lithology encountered and are provided in the Appendix. The log for TH-1 indicates sand, gravel, cobbles, and granite boulders with some sand and clay occurs from 0 to 242 feet below ground surface (bgs). Cobbles and boulders include a mixture of granodiorite, andesite, and rhyolite lithology. A brown clay lense occurs from 242 to 246 feet bgs and hard black basaltic andesite is found from 246 to 574 feet bgs. Red cinders and swelling clay are encountered from 574 to 670 feet bgs. Fractured black basalt is logged from 670 to 1000 feet bgs. The log for TH-2A indicates sand, cobbles, and boulders from 0 to 260 feet bgs. Red and black volcanic rock with occasional sandy brown clay is found from 260 to 440 feet bgs. Gray to black volcanic rock (possibly andesite) with minor amounts of sandy brown clay is logged from 440 to 720 feet bgs.

Washoe county hydrogeologists reviewed these logs for interpretation of depth to Kate Peak volcanics and whether granodiorite was encountered. Identification of lithologic contacts in an alluvial fan depositional environment is subjective and requires prior knowledge of the local geology. Based on similar lithology encountered in other Washoe County wells (Mt Rose 3, 4, 6) located south of the Tessa wells, depth to volcanics at Tessa 1 is 246 feet and at Tessa 2 is 260 feet. Granodiorite was not encounter at either well site. Using the surface elevations for Tessa 1 (5750 ft) and Tessa 2 (5620 ft), the elevation of the top of Kate Peak volcanics is calculated at 5474 feet for Tessa 1 and 5360 feet for Tessa 2.

References

Bonham, H. F., Jr., and Rogers, D. K., 1983. Geologic map, Mt. Rose NE quadrangle: Nevada Bureau of Mines and Geol., Map 4Bg.

Desert Research Institute, 2000. Western Regional Climate Center, Western U.S. Climate Historical Summaries and SNOWTEL Data, World Wide Web Site, http://www.wrcc.dri.edu/.


WELL CONSTRUCTION

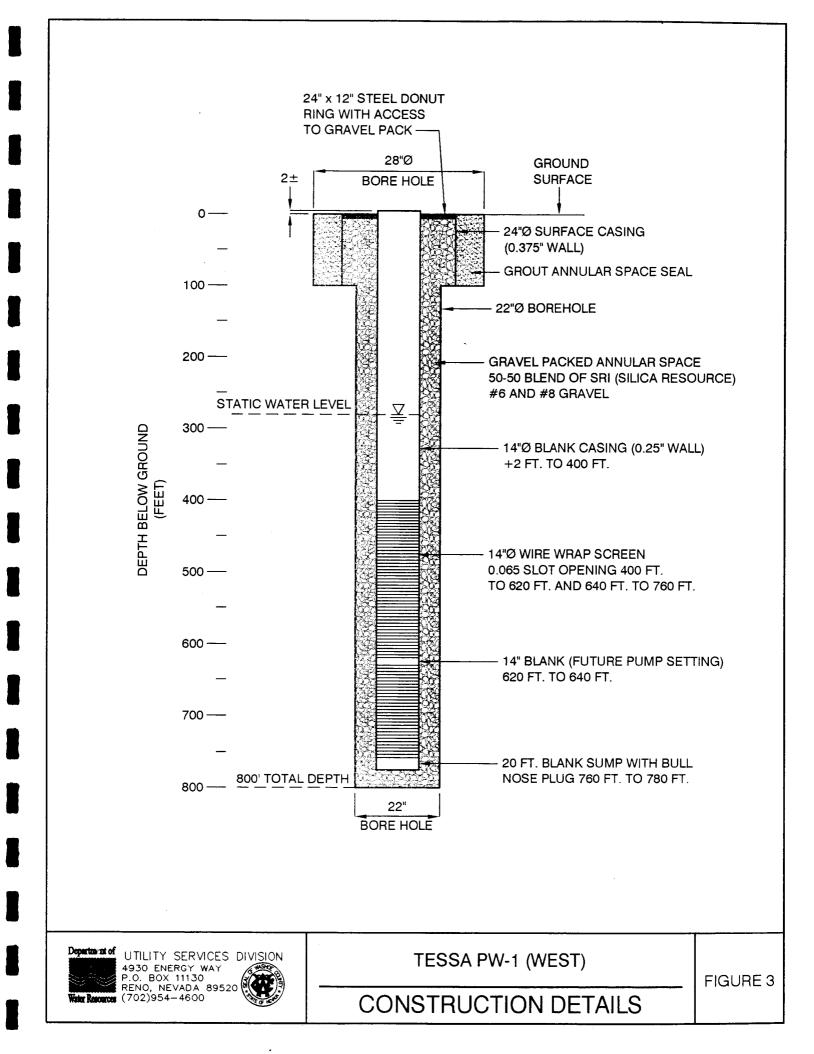
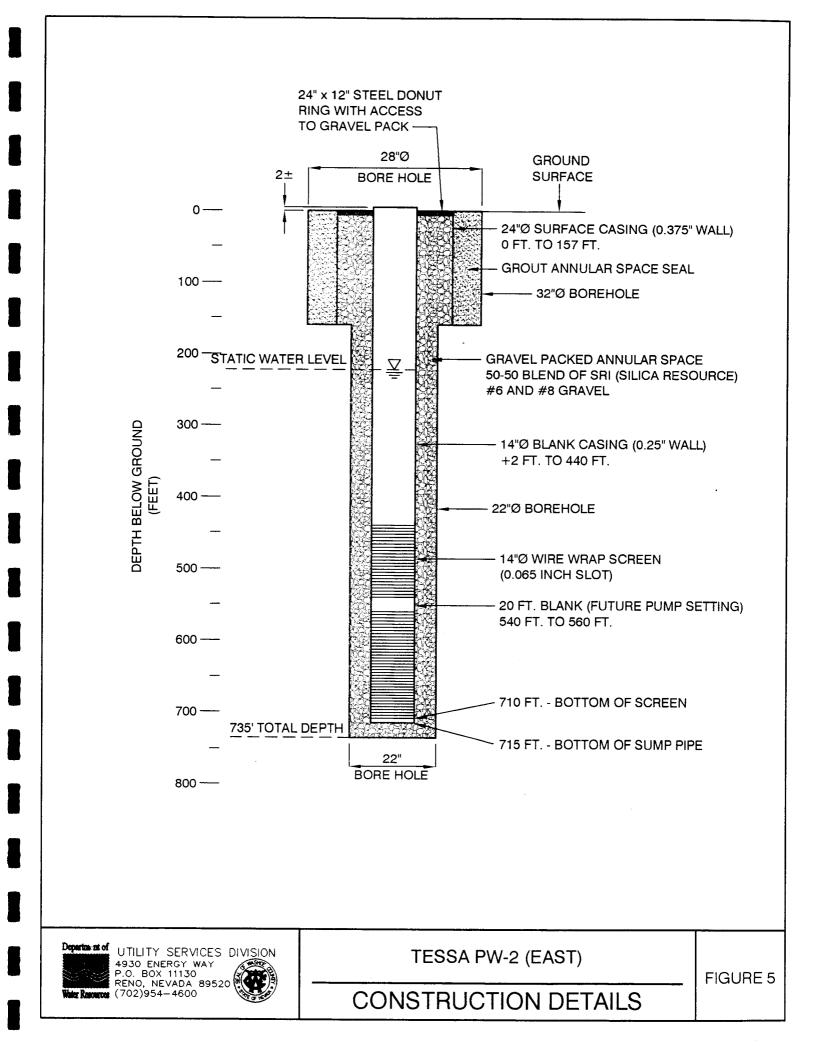

Table No. 1 shows the well construction details for the two completed monitoring wells and the two completed production wells. Figures 2 through 5 show the individual well construction details in a cross-sectional diagram for the two test holes and the two production wells. Drillers Logs are included in the Appendix.

Table 1	Well Construction Details			
Well Number	Total Depth	Description		
MW-1 (west)	1000 feet	2-inch diameter steel pipe set to 1000 feet. Blank2-in to 454 feet. Mill slotted pipe from 454 feet to1000 feet. Grout seal from ground surface to 100		
		feet. Gravel packed from 100 to 1000 feet.		
PW-1 (west)	780 feet	Blank 24-inch conductor casing cemented to 100 feet. Blank 14-inch casing to 400 feet with a blank section between 620 and 640 feet (for future deeper pump set). 14-inch wire-wrap screen (0.065 slot) from 400 to 620 and 640 to 760. Static water level in June, 00 – 280 feet below ground surface. Gravel packed with 50/50 blend of Silica Resources #6 and #8 gravel.		
MW- 2A (East)	725 feet	3-inch diameter schedule 40 steel pipe. Blank casing to 467 feet. Mill slot steel casing from 467 to 698 feet. 100 ft surface seal, gravel packed to 725 feet.		
PW-2 (East)	715 feet	Blank 24-inch conductor casing set and cemented to 157 feet. Blank 14 inch casing to 440 feet with another blank section between 540 and 560 feet. Wire wrap screen (0.065 slot) from 440 to 540 and 560 to 710. Gravel packed with 50/50 blend of Silica Resources #6 and #8 gravel.		

WELL DEVELOPMENT

Immediately following completion of well construction, the wells were developed using a ten- (10) foot double surge block and perforated pipe. Development began at the top of the screen and moved gradually downward to within 5 feet of the bottom of each well. Once one complete pass of the well was made, development by surging continued until it was the opinion of Washoe County that development by surging was complete. Additional development by pumping occurred just prior to running the aquifer stress tests. Each well was pumped intermittently and the water in the pump column was allowed to surge back through the pump bowls and into the well. During pumping development, a mixture of NuWell 220TM, a product of Baroid was mixed into the well. NuWell 220TM assists in breaking down drilling mud and cleaning of the well.

DEPTH 12"Ø LITHOGRAPHY BOREHOLE GROUND BELOW SURFACE SUMMARY GROUND (FT.) (FT.) 0 100 FT. CEMENT SURFACE SEAL 100-SAND, COBBLES, BOULDERS STATIC WATER LEVEL 219 FT. 200-<u>_</u> 300 ----RED AND BLACK 3"Ø SCHEDULE 40 **VOLCANIC ROCK** STEEL PIPE WITH OCCASIONAL SANDY BROWN CLAY 400-500-GRAY TO BLACK VOLCANIC ROCK MILL SLOT (0.060 SLOT) (POSSIBLY ANDESITE) 3"Ø SCHEDULE 40 STEEL WITH MINOR AMOUNTS 600 -OF SANDY BROWN CLAY 730' 700 — TOTAL DEPTH


4930 ENERGY WAY P.O. BOX 11130 RENO, NEVADA 89520 (702)954-4600

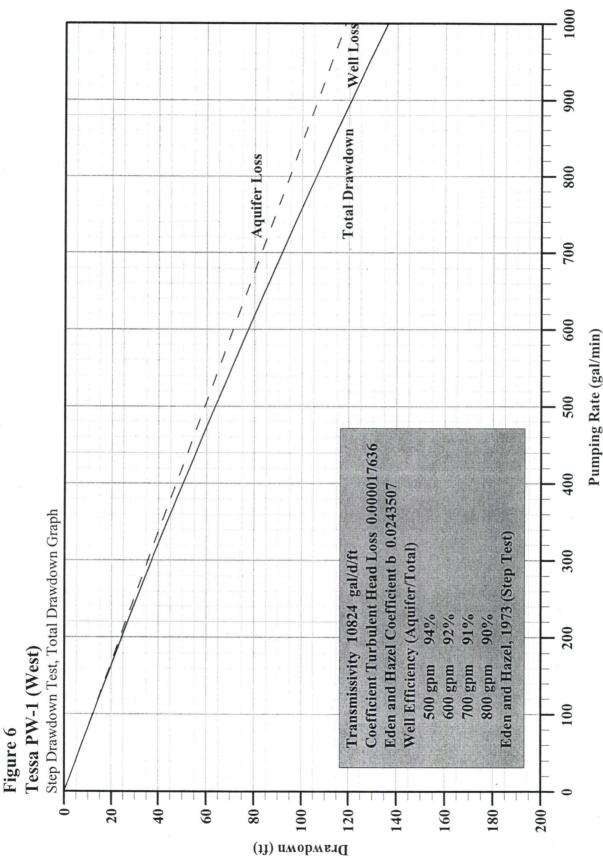
TESSA TH-2 (EAST)

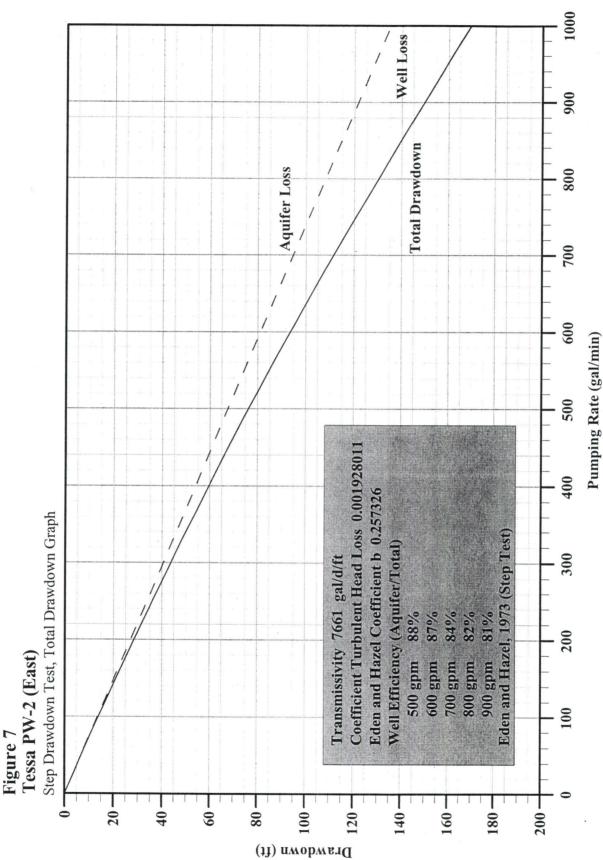
FIGURE 4

CONSTRUCTION DETAILS

Sand content was monitored during development pumping and development was judged to be complete once the sand content was less than 5 parts per million as measured with a RossumTM sand tester and the water was visibly clear.

The effectiveness of development is determined by analysis of step drawdown data during aquifer stress tests. Results showed the wells to be highly efficient and were fully developed. Details of the efficiency test are included in the section titled "Aquifer Stress Tests."


WELL TESTING SUMMARY


The line-shaft turbine pump used for well development was also used for testing purposes. The testing program consisted of a step drawdown test where each well is pumped at rates selected by the hydrogeologists for 100 minutes each. The step drawdown tests were followed by a 72-hour constant discharge test where the well(s) were pumped continuously at a rate selected by the hydrogeologists for a 72-hour duration.

Step Drawdown Testing

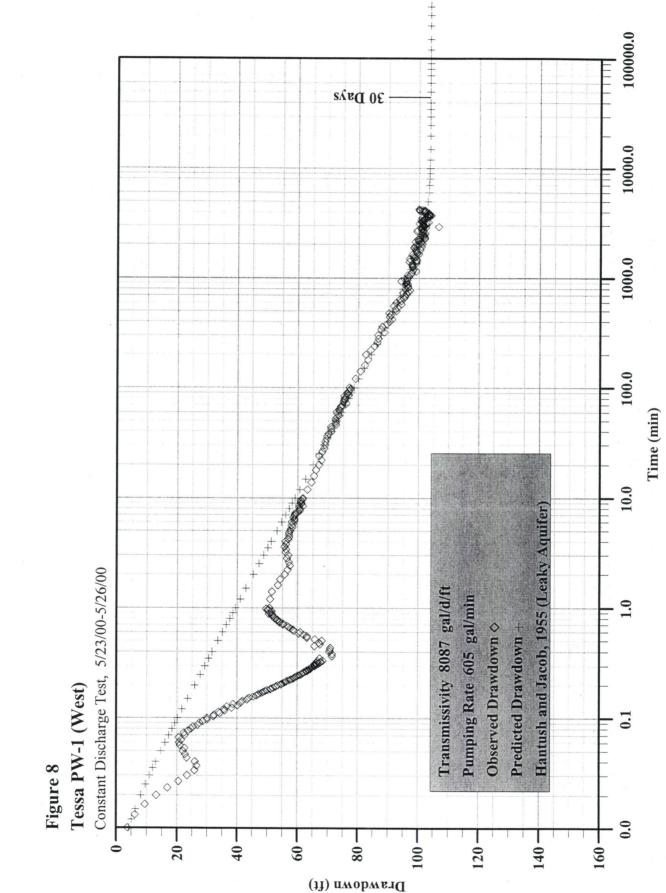
The results of the step drawdown testing showed the wells to be fully developed and highly efficient. Table 2 shows a summary of the efficiency results at various pumping rates for each well. At the recommended design capacity for PW-1 (west) of about 650 gallons per minute, the efficiency is above 90%. At the recommended design capacity for PW-2 (east) of about 850 gallons per minute, the efficiency is about 80 %. Tables 3 and 4 show the data summary from each step drawdown test, including pumping rates, drawdowns, and specific capacities. Graphs from the step drawdown testing are shown in Figures 6 and 7.

WELL NUMBER/STEP	PUMPING RATE (gpm)	EFFICIENCY (%)
Pw-1 (west)	500	94
	600	92
	700	91
	800	90
PW-2 (east)	500	88
	600	87
	700	84
	800	82

Step	Duration t (minutes)	Pumping Rate Q (gpm)	Drawdown S (feet)	Specific Capacity Q/s
Ι	100	500	63.51	7.87
П	100	604	83.86	7.20
III	100	690	99.65	6.92
IV	100	800	118.19	6.76

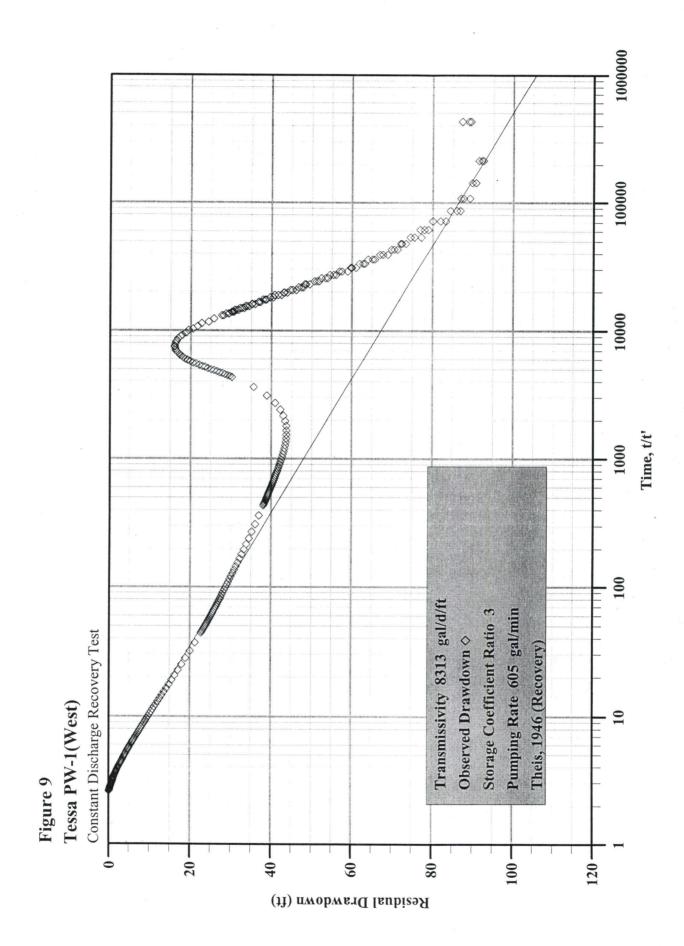
TABLE 3-Step Drawdown test, PW-1 (west), Data Summary

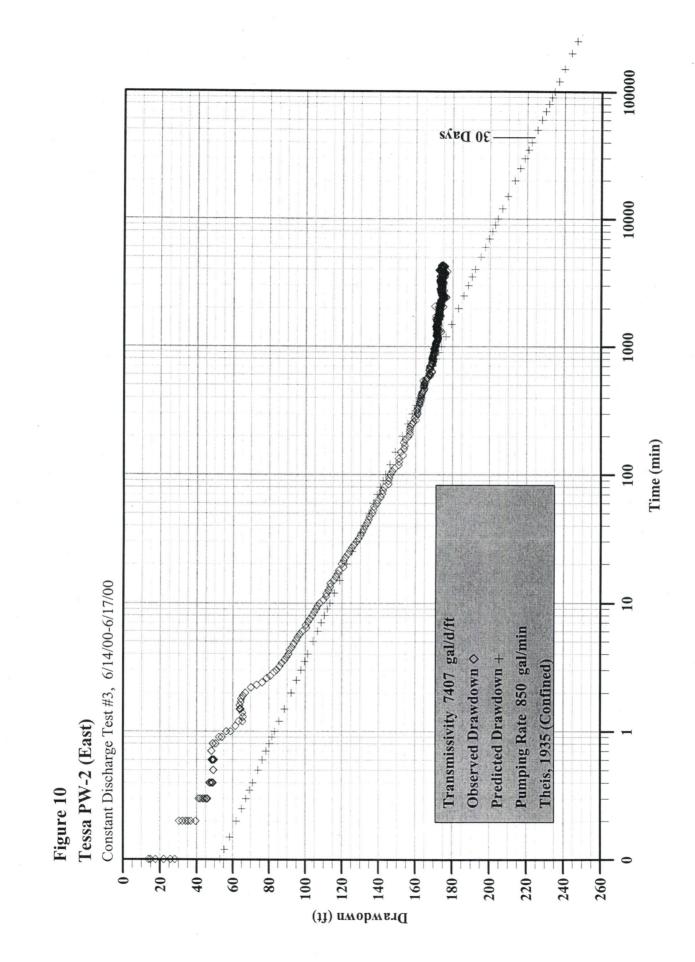
TABLE 4-Step Drawdown test, PW-2 (east), Data Summary—Note that steps V and VI were run the following day after 12 hours of recovery.

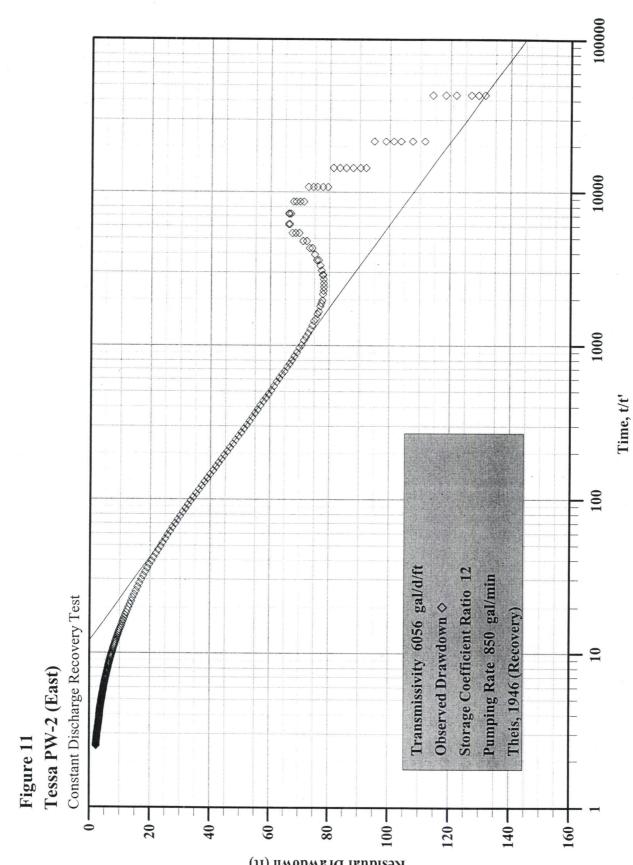

				Specific
Step	Duration	Pumping Rate	Drawdown	Capacity
	t (minutes)	Q (gpm)	s (feet)	Q/s
I	100	506	79.29	6.38
П	100	604	100.89	5.99
Ш	100	716	124.82	5.73
IV	100	831	151.93	5.47
V	100	950	164.22	5.78
VI	100	1050	192.63	5.45

Constant Discharge Testing

The purpose of constant discharge testing is to determine aquifer hydraulic properties that, once determined, allow predictions regarding the long-term performance of a well. The test data was analyzed using the computer program "Aquifer Win32" by Environmental Simulations, Inc. Aquifer transmissivities in gallons per day per foot of aquifer width (gpd/ft.) were about 8,100 gpd/ft for PW-1 (west) and 7,400 gpd/ft for PW-2 (east). Storage coefficients based on drawdowns from nearby observation wells ranged from 0.1 to 0.001.


Results from the constant discharge tests are depicted in Figures 8 (drawdown PW-1 west), 9 (recovery PW-1 west), 10 (drawdown PW-2 east) and 11 (recovery PW-2 east). The flattening of the drawdown curves near the end of each test indicate a recharge boundary affected the results. The recharge boundary may be the result of leakage from an overlying aquifer or perhaps some other recharge source. In any case the recharge boundary provides a conservative buffer in the yield recommendations for the wells.


Figures 12 and 13 show drawdown predictions vrs time at various pumping rates. The predictions are made without the conservative impact of the recharge boundary. The



Residual Drawdown (ft)

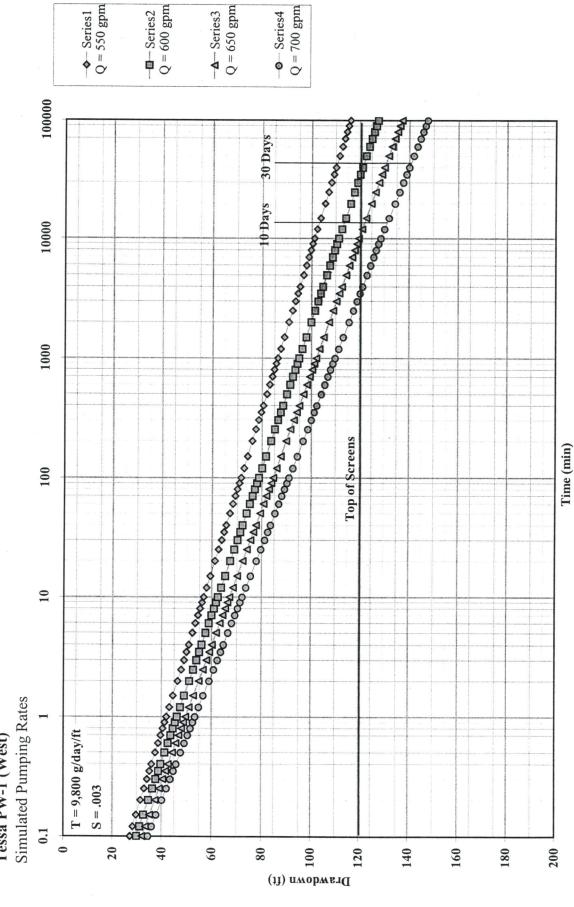
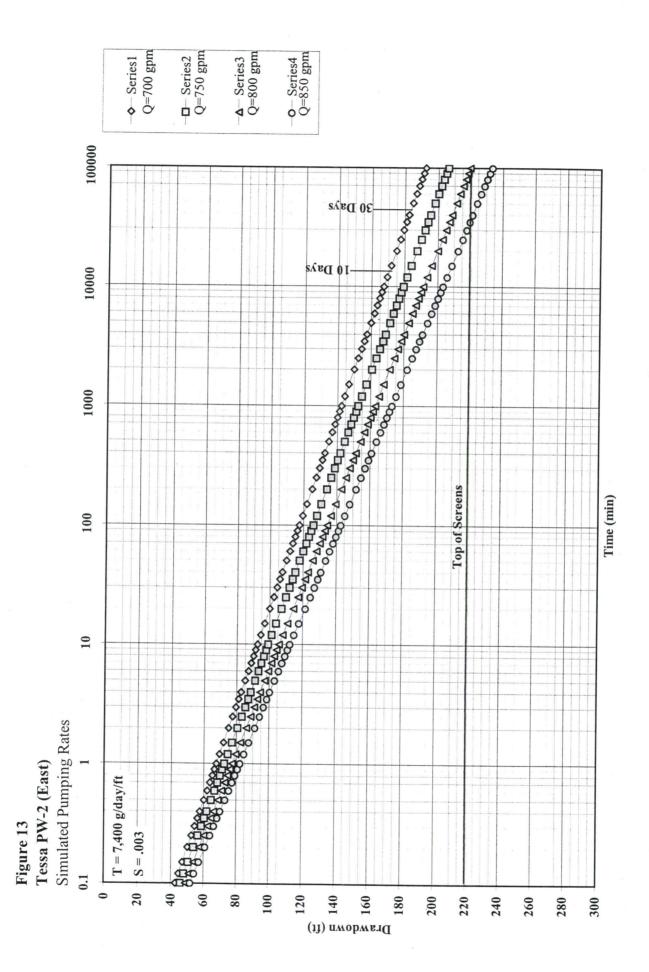



Figure 12 Tessa PW-1 (West)

plots also show the depth to the top of the screened interval for each well. Without the conservative impact of the recharge boundary, the figures show what pumping levels should be at various pumping rates for a specific period of time. The recommended yields are based on the assumption that the wells will never pump continuously for more than 30 days. If pumping scenarios are reduced such that the wells are not likely to pump continuously for 30 days, the rates could be increased by about 100 gallons per minute for each well.

The ideal mechanism to achieve the maximum yield without dropping the pumping level below the top of the screens would be to install a variable speed pump. A variable speed pump could be adjusted to a specific pumping level, rather than a specific pumping rate. Depending on the pump curve, the well could pump significantly higher rates for short periods of time which would allow better "peaking capacity" from the wells. Setting the rate to the maximum pumping level would allow the well to perfectly match the aquifer yield.

WATER QUALITY

Samples were collected according to sample collection protocol outlined in Standard Methods for the Analysis of Water and Wastewater then submitted to State and/or Federally certified analytical laboratories for water quality analysis. The samples were analyzed for primary and secondary inorganic constituents, volatile and synthetic organic compounds, and radiochemistry. All analysis results are included in the Appendix.

Tessa PW-1 (west)

Water quality analysis was performed following 48 hours of constant rate discharge of approximately 600 gallons per minute. Laboratory analysis indicates water quality meets all current State of Nevada drinking water standards.

Tessa PW-2 (east)

Water quality analysis was performed following 20 hours of constant rate discharge. Laboratory analysis indicates water quality meets all current State of Nevada drinking water standards.

APPENDIX A-Drillers Logs, Geologists Logs

ſ

CANABY-CLIENT'S COPY	URCES	÷		ATE OF			Tan	OF.		
FINK-WELL DRILLER'S COPY		DIV	ISION (of wa:	TER RESO	URCES	-			
PRINT OR TYPE ONLY		W	ELL D	RILLI	ER'S REI	PORT				
DO NOT WRITE ON BACK		orm in its ent								
		800000	dance with	NRS 534	1.170 and NA	C 534.340			TENT NO.	42556
1. OWNER Galena Water	Entern	rices					NUTIC	E OF IN 4.5 1	Miles Wes	$\frac{1}{1}$ of
MAILING ADDRESS C/O Rand	ly Bowl	ino			Highway	395 on 1	Mount R	ose H	ighway	
P.O. Box 12926 Reno.										<u>-</u>
2. LOCATION NW 1/4			т	18	N/S R	19 E	Washoe			~
PERMIT NO. 61267 & 6126 Issued by Water Rest	58	150-	102-01		Not Appl:		indomy c			Coun
Issued by Water Rest	MICCA		Parcel No.				Subdivision	Name		
3. WORK PERFORM			4.		PROPOSED			5.	WELL TYP	
	Recond			Domestic		Irrigation			ble 🛄 Roter	y 🕅 RVC
Deepen Abandon	Other			Municipal	Industrial	Monitor			r 🗌 Other	
6. LITHOL	OGIC LO	G			8.	WE	ELL CONS	TRUCTI	ON TO	
Material	Water Strata	From	То	Thick-	Depth Dril	Ned. 795	Feet	Depth	Cased 78	Fee
Boulders and SAnd		0	6			HOLE	DIAMET			
Boulders		6	16		1 .	28 Incl	Prom Dea		т₀ <u>100</u> ғ	
Granite Boulders		16	22		1		hcs100			
Boulders, Cobbles, and							hcs			CCL (
Sand		22	200				ASING SC			
Sand and Gravel with				ļ	Size O.D.	Weight/Ft.	Wall Thi		From	То
a Little Clay		200	210		(Inches)	(Pounds)	(Inch		(Feet)	(Pect)
Boulders, Cobbles, and					24		0.37		0	100
Sand	· ·	210_	220			· · · · · · · · · · · · · · · · · · ·	0.250)	0	780
Boulders and Hard Rock		_220	230			<u>}</u>				
Cobbles, Sand, and Blue Clay		0.20	0.25		Perforation		7.4	0		
obbles and Sand		<u>_230</u> 235	235		Size pe	efforation 0.	065	ipScr	een	••••••••••••••••••••••••••••••••••••••
Sandstone, Volcanic					From	4	00_feet		620	feet
Rock, and Sand		310	320						760	feet
Volcanic Rock and					From			tů		feet
Black Rock		320	440			***************************************		lO		
Volcanic Rock, Red and					Surface Se				Scal Typ	
Black Rock with Sands		440	450			eal100!				e. at Cement
Black Rock with Blue					· ·	Method: 🖾			🖾 Cei	ment Grout
Sandy Clay		450	480				Poured			ncrete Grou
Coarse Sand with Blue		100			Gravel Pac	ked: 🖾 Ya	es 🗆 N	0		
Clay Volcanic Rock and a		480	520	·····	From	0	feet 1	0	795	feet
Little Blue Clav		520	530		9.		WATER I	EVEI		
Volcanic Rock with		269_			Static water	level	_282		feet below	land surfac
Sands		530	650						.P.M.	
Volcanic Rock with						erature				
Sandy Blue Clay		650	660		10.	DRIT	LER'S CEI			
Date started				00					nd the report i	s true to the
Date completed			0		Dest of my	knowledge.				
				1922	Name La	yne Chri	stenser	Comp	any	
and the second se	EST DAT						Cc	ntractor		
TEST METHOD: 🗍 Bai		Իսաբ	🖄 Air Li	ft	Address	12 Lount	y Koad	98 ontractor	-4-4-14-14-14-1	
G.P.M. Dr. (Feet J	aw Down Below Static)		Time (Hour	(2)	Woodla	nd, CA 9	5605			
	320		90+		Nevada con	tractor's licen	se number			
		_			issued by	the State Con	tractor's B		19101	
		1			Nevada dril	ler's license n	umber issu	ed by the	2112	2
					UIVISION (y_1 water Reso $y_2 \cap y_2$	ources, the e	on-site dr	iller 2113	
]	Signed 24	ily la	opp	-	on site or contra	

(0)-627

PAGE	II	OF	II	
CANAR	Y-C	LIEN	r's C	 RESOURCES

PRINT OR TYPE ONLY

DO NOT WRITE ON BACK

-

STATE OF NEVADA

DIVISION OF WATER RESOURCES

WELL DRILLER'S REPORT

Please complete this form in its entirety in cordance with NRS 534.170 and NAC 534.340

OFFICE USE ONLY

Log No	
Permit No.	
Basin	

		accord	atics with	n NKS 55	4.170 and NA	C 534.340	NOTICE OF D	TENT NO	
1. OWNER Galena Water	Enterr	rises			ADDRESS	T WELL L	OCATION 4.5 M	iles Wes	t of
MAILING ADDRESS C/U Ran	dy BOW	ing			Highway	395 on M	ount Rose Hi	ghway	
P.O. Box 12726	Reno, N	W 89	510						
2. LOCATION NW Va	SW 1/4 Sec	. 35	T.	18	N/S R	19 E	Washoe		Couper
2. LOCATION NW 1/4 PERMIT NO. 61267 & 612 Issued by Water Res	68	150-	102-01		Not App.	licable			country
							Subdivision Name		
3. WORK PERFORM			4.		PROPOSED		5.	WELL TYP	
	C Recondi			Domestic Municipal	/Industrial	Irrigation Monitor	□ Test □ Cz □ Stock □ Ai	ible 🗌 Rotar r 🗌 Other	y C RVC
6. LITHOI	LOGIC LO	G			8.	WE	LL CONSTRUCT		
Material	Water Strata	From	То	Thick- oess	Depth Drill		DIAMETER (BIT	Cased	Feet
Black Volcanic Rock		660	795			noll	From	To	
with some Blue Clay						Incl	lesFeet	F	eet
and Sands	++					Inch	esFeet	F	eet
	<u>↓</u>					Inch	Fcct.	F	eet
						C	ASING SCHEDUL	F	
	<u> </u>				Size O.D.		Wall Thickness	From	Το
о ————————————————————————————————————	+				(Inches)	Weight/Pt. (Pounds)	(Inches)	(Feet)	(Feet)
*	+								
	+								
	++								
	+				Perforation				
					Type p	erforation			
	+				From	moration	feet to		feet
	+		-		From	12774 2444444444444444444444444444444444	feet to		feet
	<u>├</u>				From		feet to		feet
					From	48*4#***	feet to		feet
					From		feet to		feet
					Surface Sea	al: 🗌 Yes	D No	Scal Typ	e:
					Depth of Se	al		I Ne	at Cement
					Placement I	Method:	Pumped		ment Grout
		+			-		Poured		ncrete Grout
					Gravel Pack	ed: 🗆 Ye	5 🗆 No		
							feet to		feet
					9.				
			-				WATER LEVEL	Free balance	
					Artesian flo	level;	G	feet below	
	+					crature			
					10.		ER'S CERTIFICA		
Date started					best of my l	as drilled und	er my supervision a	nd the report i	s true to the
Date completed				, 19	11				
7. WELL I	EST DATA	1			NameL.S.	ne Chri	Contractor	any	
TEST METHOD: Ba	iler 🗆 I	20mp	Air Li	ft	Address_2	75 County	Road 98 Contractor		
G.P.M. Dr	Below Static)		Time (Hour	(2)	Woodla	and, CA	95695		
				×	Nevada cont	ractor's licen	se number tractor's Board-00		
					Nevada deill	an's license	and the second barrel		
					Sivision o	- A	urces, the on-site dr	iller.	
					Signed/LL	ipy Co	porming actual drilling		
					Date Ser	tember	1999	on site or contra	clor
		1					, 1999	·····	

(Rev.)-91)

(0)-627

WHITE-DIVISION OF WATER RES CANARY-CLIENT'S COPY PINK-WELL DRILLER'S COPY T	HI	DIV			' NEVADA TE <mark>R RESO</mark>	URCES	Log No.	FICE USK ON	
FRINT OR TYPE ONLY DO NOT WRITE ON BACK	1) 1	Ple	ase comp	lete this f	ER'S REI	ircty la	Perinit No Basin		
1. OWNER Galina Wate	Enter	prise:	¢.		4.170 and NA		NOTICE OF IN OCATION		
MAILING ADDRESS C/3 Rem Reno, Neveda	4 100 n	510	နင်္ဂ နင်္ဂ	129.26	A.5 mile Rose Hig	s west o	of highway 3	95 on Mo	unt
2. LOCATION NW 1/4 ST	VA Se	. 35	т 1	8	N/S R 19	E	Washoe		 Co
PERMIT NO 61267, 6126 Issued by Water Res	Bources	APN	150-10. Parcel No.	2-01	N/A		SubJivision Nume		······
3. WORK PERFORM		<u></u>	4.	<u></u>	PROPUSED		Structure Nume	WELL TY	DE
	C Recond			Domestie Municipal		Irrigation		able A Rota	ry [] R'
6. LITHO	OGIC LC	xc			8.	WF	LL CONSTRUCT		
Material	Water Strata	From	То	Thick- ness	Depth Dril	led 1000	Feet Depth		0
Boulders/cobbles		01	2201	220			DIAMETER (BIT	Tu	
Little sand				<u> </u>	12		es 0 Feet	1000	
Dark basalt		220'	250'	30'			lesFeet		feet
Little brown clay					<u> </u>	·····	ASING SCHEDU		reet
Dayle Lass 15	ļ	0.501	2201	0.0.1	Size O.D.	Weight/Ft.	ASING SCHEDUL Wall Thickness	E From	To
Dark baselt Some red cinders		250'	330'	80'	(Inches)	(Pounds)	Wall Thickness (Inches)	(Feet)	(Fect)
	•		<u> </u>	<u> </u>	2"		Blank	+2'	<u> 1000</u> 454'
Dark_basalt/		330'	540'	210'	2"		Screen	4541	1000
Brown sandy clay				<u> </u>	Perforation	ы. м			
Dark basalt		540'	670'	130'	SIZC DC	FIOFUCIOR	111 Slot		·····
Some ash and white					From 42	<u>4'</u>	feet to 1000		
<u>elay</u>					From		fect to		
Gray rock with gray		_670'	6851	15'	From		fcct to		
ash					The second se	al: 🖄 Yes		Scal Ty	
Black porous basalt		685	1000'		Depth of Sc	al 100	1	D N	eat Cemer
Little ash/brown	1 /s het anstantinus meterspie		T.D.		Placement I	Method: 🕅	Pumped Poured		oment Gre oncrete Gi
sandy clay					Gravel D1				
					From	red: ¹ 100, Ya	feet to	1000'	feet
we wanted at the $r > 0$ is the table of the $r > 0$ is the specific of $r > 0$ in the specific of $r > 0$ in the specific of $r > 0$ is the specific of r			·		9.		WATER LEVEL		
۵۰ ۲۰					Static water	level 281			
					Artesian flo	w None erature COO	G	.P.M	
		<u> </u>			10.				()
Date started June 6th		·	L	10 00	This well w	as drilled und	LER'S CERTIFICA		is true to
Date completedJune29th					best of my	knowledge.			
e la energe de la companya de la com	FST DAT			,	Name La	<u>yne Chri</u>	stensen Comp	any	
TEST METHOD: 🔲 Ba		Pump	K Air Li	ifi	Address 27	5 County	Road 98		
O.P.M. D	iw Down Below Statie	· ·	Time (Hou		Woodlan	d, CA 9	Contractor 5695		
Airlift through	Delow Sufic		Total		Nevada con	tractor's licen	se number	010101	
2" casing. Could not					issued by	the State Con	traujor's Board	019101	
be monitored.			******		Nevada dril Division	er's liconse y	urcs the on site di	2013 z	3
			**			Cal			
					Signed	\sim	morning actual drilling	<u></u>	

STATE OF NEVADA

pw 2

DIVISION OF WATER RESOURCES

EASTWELL	
EAST WELL PWZ TESSA P OFFICE USE ONLY	e)-2
OFFICE USE ONLY	ast
Log No.	-
Permit No	
Basin	

PRINT OR TYPE ONLY DO NOT WRITE ON BACK

WELL DRILLER'S REPORT

Please complete this form in its entirety in accordance with NRS 534.170 and NAC 534.340

1. OWNER	GALENA V	WATER H	ENTERP	RISES			1		NOTICE OF	INTENT NO.	* ******
MAILING A	DDRESS C	/O RANI	DY BOW	LING C	ONSUL	TING	ROSE HIG	AT WELL HWAY FRO	NOTICE OF LOCATION 4.5 M HIGHWAY 3	MILES UP	MOUNT
							OF ROAD				
2 LOCATI	ON NE	V. 5M	اً (I/. C	35	. m	18	N/S P	19 r	WASHOE		
PERMIT NO) 61269 8 Issued by	<u>61270</u> V Water Rev) Destroes	150	102-0	1	NOT AP	PLICABLE	Subdivision Name		County
3.	WORK	PERFORM	AFD		4.).			Subdivision Name		
X New We				dition		Domestic	PROPOSED		5.		PE
Deepen	🗌 🗌 Aba	indon [Other.			Municipa	1/Industrial	Monitor	Test Stock	Cable 🗌 Rota Air 🗌 Othe	ary 🖾 RVC
6.		LITHOL	ogic l	OG							
	Material		Water Strata	From	То	Thick- ness	Depth Dri	lled	ELL CONSTRUC 7.35 Feet Dep	th Cased	715 Feet
SAND, GR		OBBLES					-1	HOLI	E DIAMETER (BI		
AND BOUL	DERS			0	160		- I .	32 Inc	From hes0_Fe	et (157)	r .
SAND CT		0000		ļ	ļ			22 Inc	hes 157 Fe	735	Feet
SAND, GR BOULDERS		ORRTER							hesFee		Feet
VOLCANIC		D CT AV		1.0					CASING SCHEDU		
1010/11/10	Jo, HINU	A CLAI		160	310		- Size O.D.	Weight/Ft.	Wall Thickness	From	То
RED AND	BLACK				+	+	(Inches)	(Pounds)	(Inches)	(Feet)	(Feet)
VOLCANIC		SANDY			 		24		.250	0	715
CLAY, GR	ANITE			310	404					0	157
									1		l
BLACK AN						1	Perforation Type p	and a star I	IRE WRAP SC	REEN	
VOLCANIC	S, SAND,						Size pe	rforation C	.065	->+A+A+AL	
CLAY				404	673		From		440 feet to	<u>5</u>	40 feet
BIACK DO	077 117 777					ļ	From		feet to	/	10 feet
BLACK RO	<u>CK WITH</u>	SANDY					From		feet to		faat
BROWN CL. ROCK WIT	H VOLCAN	TURED					From		feet to		feet
- NOUN WIT				_673_	735		Surface Sea	I: X Yes		Seal Typ	
						· · · · · · · · · · · · · · · · · · ·	Depth of Se	al 157'		🗌 Ne	at Cement
							Placement N	fethod: 🕅	Pumped		ment Grout
									Poured		ncrete Grout
							Gravel Pack	ed: 🖄 Ye	s 🗆 No		
			ļ.						0_feet to	······	735 _{feet}
							9.		WATER LEVEL 18		
······································							Static water	level		feet below	land surface
							Artesian flow				
							Water temper				
Date started				TANTIAN			10. This well wa	DRILL	ER'S CERTIFICA	TION	
Date completed		*****		MARC	CH 25	192000	best of my ki	s armed unde nowledge.	r my supervision a	nd the report is	s true to the
7.					<u></u>	194.0.00	Name LAYN	E CHRIST	ENSEN COMPA	NY	
	WIETHOD:	ELL TES							Contractor	51.4	*****
TEST M		LJ Bailer		ատթ 🛛	Air Lif	t 🛛	Address 27	5 COUNTY	ROAD 98 Contractor		
	G.P.M.	(Feet Beld	Down ow Static)	Т	lime (Hours	.)	WOODLAN	D, CA 95	<u>695</u>		
	100	250	1		47		Nevada contra issued by the	actor's licens	e number ractor's Board-00	019101	******
				+			Nevada drille	r's license nu	mher issued by the		
				†	<u> </u>		Division of	Water Resou	rces, the gr-size or	iller 2/4/	/
							Signed	Tail,	Cell-	••••	
							0	By driller por	orming actual drilling	on site or contract	tor
							Date APRII	12, 20	00		

(Rev. 3-91)

WHITE-DIVISION OF WATER RESOURCES CANARY-CLIENT'S COPY PINK-WELL DRILLER'S COPY

STATE OF NEVADA

TH-2A

DIVISION OF WATER RESOURCES

TESSA MW-2 (east)

.County

OFFICE USE ONLY

Log No
Permit No.
Basin

PRI	NT	OR	TYP	e on	LY
DO	NO	r v	RITE	l on	BACK

P.O. Box 12926

PERMIT NO. 61269 & 61270

SW

2. LOCATION NE

WELL DRILLER'S REPORT Please complete this form in its entirety in accordance with NRS 534.170 and NAC 534.340 NOTICE OF INTENT NO 1. OWNER Galena Water Enterprises ADDRESS AT WELL LOCATION 4.5 Miles up Mount MAILING ADDRESS C/O Randy Bowling Consulting Rose Highway from Highway 395 on south side Reno, NV 89510 of Road _1/4 Sec.___35___T___ 18 19 .N/S R. Washoe .E. 150-102-01 | Not Applicable

Islaed by water Res	ources		Parcel No.			-	Subdivisio	a Name		
3. WORK PERFORM	MED		4.		PROPOSE	D USE	·····	5.	WELL TY	'PP
	🗆 Recond			Domestic		Irrigation	Test			ary 🗌 RVC
Deepen Abandon	Other				/Industrial	Monitor	Stock	🗌 🗆 Ai	r 🗌 Oth	
6. LITHOI	OGIC LO)G			8.	w	FLL CON	STRUCT	ON	
Material	Water Strata	From	То	Thick- ness	Depth D	rilled 725 W				. 43
Sand and Boulders		0	22		-1	HOLI	e diamet			
Boulders with Quartz		22	36		-	12 1// .	From	n	To	
Sand and Cobbles		36	52			12 1/4" Inc				
Cobbles and Sand		52	59		-		hes			Feet
Boulders and Sand		59	87		¦		hes			Feet
Sands and Gravel with					1		CASING SO	CHEDUL	E	
some Brown Clay		87	97		Size O.D. (Inches)	Weight/Ft. (Pounds)	Wall Th (Inc		From	To
Cobbles and Sands with					3"	(rounds)			(Feet)	(Feet)
Quartz		97	107		<u>↓</u>		BUR 40	Steel	+5.43	467.43
Cobbles with Quartz					1			·····	467.43	698.43
and Sand		107	137		Destauri		L			<u> </u>
Cobbles and Sand with					Perforatio	nerforation	111 S 14	ot		
Boulders		137	169		Size	perforation	060 Slo	t		
Boulders		169	174		From	467	.43 feet	to	698.	43 feet
Cobbles and Sand		174	238		From	*****	fcet	to		feet
Sand and Gravel		238	242		From		feet	to		feet
Sand and Volcanic					From		ICCI	to	•	feet
Gravel		242	250							
Fine to Medium Sand					Surface S	Scal 100 fe	No		Seal Ty	
and Volcanic Gravel		250	255							eat Cement ement Grout
Medium Volcanic Gravel		255	260		riacemen	t Method: 🖾	Pumped Poured			oncrete Grout
Coarse Sand and Gravel		260	263							
Red and Black Roack						cked: 🖄 Y			-	
with Sands		263	280		From		100 feet	to	/	25 feet
Red-Black Rock with					9.		WATER I	LEVEL		
Brown Clay and Sands		280	300		Static wate	er level,		219	feet below	land surface
Boulders		300	302			low				
lack Rock and Sandy					Water tem	perature	°F	Quality GC	od	
Clay		302	310		10.		LER'S CEI			
Date started	Septe	mber	27		This well	was drilled und				is true to the
Date completed	Octob	r 13	27,	19.22	best of my	knowledge.	ior my supe	A V 151011 41	na une report	is true to the
				19 <u>7.9</u>	NameL	ayne Chri			any	
· · · · · · · · · · · · · · · · · · ·	EST DATA					275 0		Intractor		
TEST METHOD: 🗆 Bail	er 📙 I w Down	Pump	X Air Lif	t		275 Count	Č	ontractor		*** * *** ** *** *** **** ****
G.P.M. (Feet B	elow Static)		Time (Hours	5)		and, CA 9				
15 N/A		- <u>N/A</u>			Nevada co issued by	ntractor's licen y the State Con	se number tractor's Be	00	19101	
					Nevada dri	iller's license r	umber issu	ed by the	117	2
		+]	1	of Water Reso	and an a	on-site dri	ller A.A.S	2
		+			Signed.	By driller po	erforming acti	al drilling o	on site or contr	actor
					Date Oc	tober 21.	1999	-		

(0)-627

WHITE-DIVISION OF WATER RESC CANARY-CLIENT'S COPY PINK-WELL DRILLER'S COPY	CANARY-CLIENT'S COPY INK-WELL DRILLER'S COPY DIVISION OF WA						OF NEVADA OFFICE VATER RESOURCES Log No Permit No				
PRINT OR TYPE ONLY DO NOT WRITE ON BACK		Ple	ase comp	lete this f	LER'S REPORT is form in its entirety in 534.170 and NAC 534.340 NOTICE OF INTENT NO						
1. OWNER				1		AT WELL I	NOTICE OF	INTENT NO.	•••••••		
MAILING ADDRESS	·····				ADDRESS	AI WELL L	OCATION	*** *****			
*******						****	********		*******		
2. LOCATION		ec	T		N/S R				Co		
PERMIT NOIssued by Water Reso		+				***					
		<u> </u>									
			4.		PROPOSED		5.				
New Well Replace [Deepen Abandon [Cther	lition		Domestic	/Industrial	Irrigation		Cable 🗌 Rou	ary 🗆 RV		
				Municipal				Air 🗌 Oth	er		
6. LITHOL	OGIC LO	DG	<u> </u>		8.		ELL CONSTRUC				
Material	Water Strata	From	То	Thick-	Depth Dril	led	Feet Dep	th Cased	F		
Red and Black Rock,	Stratu	<u> </u>	<u> </u>	ness	-{}	HOLE	DIAMETER (BI	T SIZE)			
Sandy Brown Clay	<u> </u>	310	324	+	-		From	То			
Brown Clay with Black	<u> </u>	510	524	+			hesFe				
Rock with Red Volcanic	t			<u> </u>	-		hesFe				
Rock Rock		324	340			Incl	nesFc	et	Feet		
Black Rock with	••••••••••••••••••••••••••••••••••••••		1 140		-1	C	ASING SCHEDU	LE			
Volcanics "with some				+	Size O.D. (Inches)	Weight/Ft. (Pounds)	Wall Thickness	From	То		
Gravel"		340	370	<u> </u>	(Inches)	(Founds)	(Inches)	(Feet)	(Feet)		
Black Rock with Sandy			570	ł		<u> </u>			+		
Brown Clay and					· [
Volcanics		370	419	<u> </u>		Ł	L				
Black Rock with Sandy		310	417		Perforation		14+84444				
Brown Clay and					Size pe	rforation		•••••••••••••••••••••••••••••••••••••••			
Volcanics		419	426		From		feet to		feet		
Fractured Black Rock					From	******	feet to		feet		
and Volcanics		426	428		From		feet to		feet		
Black Rock with Sandy					From		feet to		Ieet		
Brown Clay and						al: 🛛 Yes					
Volcanics		428	440		18			Scal Ty	vpe: cat Cement		
Fractured Black Rock						Method:			ement Grou		
with Volcanics		440	448				Poured		oncrete Gro		
Black Rock with Sandy					Convel De -1	ced: 🗆 Ye					
Brown Clay and					11				_		
Volcanics		448	505				feet to		feet		
Boulders		505	508		9.		WATER LEVEL				
Black Rock with Sandy							****				
Brown Clay and											
Volcanics		508	540	·····	Water temp	erature	°F Quality.				
Black Rock with Sandy					10.	DRILL	ER'S CERTIFICA	ATION			
ate started				19	This well w	as drilled und	er my supervision		is true to the		
ate completed					best of my	knowledge.					
					Name		Contractor		*****		
TEST METHOD: 🔲 Bail		Pump	🗆 Air Lif	ft	Address	*****	Contractor		***		
G.P.M. Dra	w Down lelow Static)		Time (Hour:	3)	1						
(iter b		·				tractor's licen		*****			
		• +					se number tractor's Board				
		+			Nevada drill	er's license n	umber issued by th				
	<u> </u>				Division o	of Water Reso	urces, the on-site of	Iriller 211	3		
						ily .	m				
					Signed	by driller pe	rforming actual drillin	e on sile or contr	actor		
		1		1		***************************************	*** *** * *** *************************				

.

PAGE	III	0F	III
------	-----	----	-----

WHITE-DIVISION OF WATER RESOURCES CANARY-CLIENT'S COPY PINK-WELL DRILLER'S COPY

PRINT OR TYPE ONLY

DO NOT WRITE ON BACK

STATE OF NEVADA

DIVISION OF WATER RESOURCES

WELL DRILLER'S REPORT

Please complete this form in its entirety in accordance with NRS 534.170 and NAC 534.340

OFFICE USE ONLY

Permit	No
Basin	

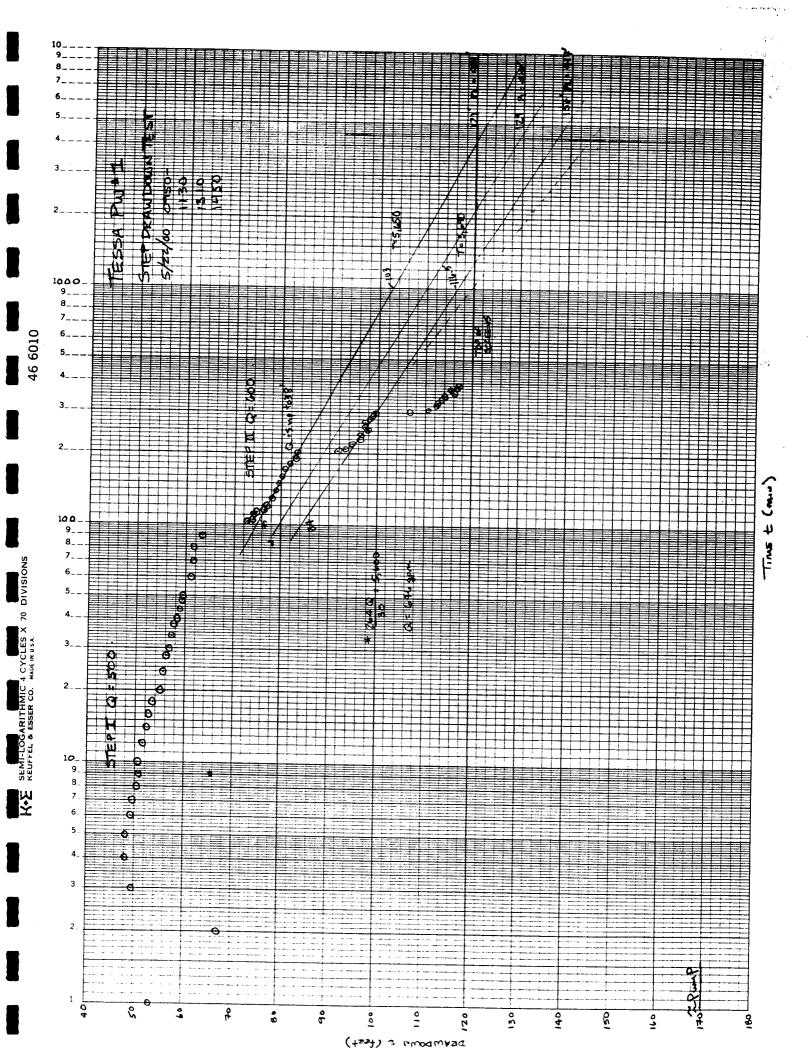
		accord	dance wit	h NRS 53	4.170 and NA	C 534.340	NOTI	CE OF IN	ITENT NO	
I. OWNER					ADDRESS	AT WELL L	OCATION	J		
MAILING ADDRESS		****	*****	*****						
					*******	******			*****	
2. LOCATION	¹ /4 Se	×	T		N/S R	E				County
PERMIT NOIssued by Water Res										······································
3. WORK PERFORM		L		1			5000171510	1		
	MED Recond	l:43.a.m	4.	D	PROPOSED			5.	WELL TYP	
	Other			Domestic Municipal	/Industrial	Irrigation	Stock		ible 🗌 Rotan r 🗌 Other	
	.OGIC LO				8.			L		
	Water	T	1	Thick-		wi led		STRUCTI Depth	ON Cased	Fee
Material	Strata	From	То	ness				TER (BIT		
Brown Clay and	+	<u> </u>		<u> </u>	4		Fro		То	
Volcanics		540	560_	+		Incl	hes	FeeL	F	eet
Brown Clay with very			<u> </u>						F	
little Rock	<u> </u>	560_	570	+		Incl	nes	Fcet.	F	eet
Black Rock with Volcanics and very					4	C	ASING S	CHEDUL	E	
little Clay		570	570		Size O.D.	Weight/Ft.		hickness	From	То
Brown Clay and Volcani		570	578	+	(Inches)	(Pounds)	(Inc	hes)	(Feet)	(Feet)
Rock	<u>c</u>	578	620		∦					
Fractured Rock with	<u> </u>	2/0	620							
Volcanics and some	<u> </u>			+		l	L			······································
Brown Clay	[620	686	†	Perforation Type n				10 184 000 184 014 400 000 100	
Volcapic Rock with			-000	1	Size pe	rforation		******************	•• •• ••• ••• ••• ••• ••• ••• ••• •••	*******
Sandy Brown Clay		686	700	<u> </u>	From	*********	feel	to		feet
Volcanic Rock with				1	From	,,	feet	to		feet
Sands and Sandy Clay			710		Fromfeet to					feet
Sands		710	715	1	Fromfeet to					feet
Volcanic Rock and										
Sandy Clay		715	725						e: at Cement	
						Method:				ment Grout
					1 lacement		Poured			ncrete Grout
					General Real	ked: 🗆 Ye		.		
					IF					A .
							Ieet	10		feet
					9.		WATER			
									feet below	
									.P.M	
						erature				
				L	10, This well w			RTIFICAT		
Date started					best of my	as ariilea una knowledge.	er my sup	ervision ai	nd the report i	s true to the
Date completed				, 19	-					
7. WELL T	EST DAT	'A			Name	*******	C	ontractor		
TEST METHOD: 🗌 Bai	ler 🗌	Pump	🗆 Air Li	ift						
G.P.M. Dr	aw Down	1								
(Feet	Below Static)	Time (Hou	(13)	Nevada con	tractor's licen	se number		••••••••••	
			····		Division of	ler's license n of Water Reso	umber iss purces, the	on-site dr.	iller 211	3
					Signed	Jula	loc	en	on site or contra	
							•			
					Date	·····				

TESSA MW-1 (west) GALENA WATER WELL SERIES 1-4 DRILLING CHARACTERISTICS TH # BIOTA Ø-10 - SANGRANITE BULLES SUBACE NEILLISL HARSTROUGH 10' 10-60-MOSTLY BOULDERS PATCHES OF SIMDY CLA VER/ROUGH WHEN BROKEN / DE.LLING BOULDERS 60 60- 80- STILL SOME BOULDERS BUT MOSTLY COBULES SIND DULLING is VERY ROUGH BUT PENT. RATES 0'1' INCREASING STRINGERS OF CLAY (BROWN) PRESENT 180-128- SMALLER COBBLES W/ALOT OF FINE 90' RED SAND, GRAVY DRILLING, EXCELLENT PENT. RATES 90-100 ENCOUNTERED SOME BROWN SANDY CLAY, WOT ENTOSIT IN SAMPLES GOOD DRILLING !! 128-137 HIT SOMETHING VERY SOLID COULD BE FORMATION OR I HUGE BULLIER REGARDLESS PENT RATES SUCK VIRY LOW 1-2 /102, "FLUCKY, EXTREMELY ROUGH CEARED DOWN TO DRILL 137-175 ROUGH DRILLING VERY BOUNCY, PENT RATES ok ZIHRS, TO AKELLY NO SUBSTRUCTIAL FLUID: ŻIŚ . 24*2*′ (655 VET. MOSTLY LUBBLES "SAND SOME SMALLER 246 BOULDERS 175-189 ANOTHER HARD SPOT, EXTREMELY SLOW PENT. RATES - I HIS COULD & CIMESTDINE EXTREMELY 142D MOSTLY SMOOTH ARILLAG. 50m1 WER 189-215 Good DRILLING, COBBLES GRAVEL/SAND CLAY ZIS-258 HAZD! BOULDERS AGAW - BLACK Rock VERY ARACTURED : 1420 PENT RATES MODERATE TO SION 6-12/14 (AURRAGE). (IN LEUS FROM 242 - 216, EXPERIENCENS SOME FLUID LOSS (SMALL AMO),

Pg 2 258 - 300 VERY ROUGH DRILLING PENT. RATES UARY FROM 5-25/HR. VERY FRATTED Black Rock with STREAKS of BLACK No is it is AND CENS DRILL GOOD & SMOOTH Little Fluid 300 7- 402 LITTLE SLACK SAND VARVING 5-75/42. ALESENT. PENT. STILL DRILLING IS VERY ROUGH, MUD VISC. SEEMS TO BE BREAKING DOWN FREQUENTLY NOW. POSS, BLE Hac INTRUSION FINE GRAVED BLACK BOOK, SOME LIGHTER Rock PRESENT BROWN ALOT OF CLAN W/ FITHER BASALT 407 - 415 BOULTERS OR FORMATION MIXED, SEM ROJGH. EXAELLENT PENT RATES 40+/4R VERY SHALLOW LAYER UNFORTUNATLY 492 :115 - "Bark INTO BESALIC FORMATION ROUGH - I VERY HARD IN AREAS EASIER DRILLIN ETHERS DENT AUG. Q 12-14/18. 492 492-BLACK COAZSE SAND W/ SANDY BROWN CLAY PENT. RATES 20-36 / HR. SMOOTH DRIG. LOSING A LITTLE FLUID Some AREAS ARE VERY CONSOLIDATED & ROUGH, 55- BLACK BASALT, SOME FINE CONSTALS IN, T DRILLING is FRACTURED & ROUGH BUT PENETRATABLE 20t/ HR SLOWER IN SOME NZEAS SOME GRAY ASH OR CLAY is PRESENT

Pg 3 of 4 SLESTY EXTREMELY HARD FRACTURED BASALT DRILLING is POOR 60 PENT RATES 3-5FT/IR. EXPERIENCING LITTLE TO NO FLUID LOSS STRING WT. 13 APPROX. 17,000 #5. RUNNIG MOST of THAT TO DRILL 574-670. MOSTLY VOLCANIC BASALT. LITTLE PRESENCE OF RED CINDERS. HITTING EENS OF WHITE CLAY & ALSO BRIL SANDY CLAY PENT RATES VARY 10 FT - 40 FT/HR. SOME CLAY SWELLING HERE 670 670-685 LITTLE LIFFERENT FORMATION HERE SHOWING GRAY ROCK W/ ALOT OF GRAY CLAYPOSSIBLY ASH PERT. CORATES 685 APE VERY GOOD AND MY PEU is infinity SUPER FAST DRILLING RUNNING VERY · LITTLE WT. TO PENET PATE, How Loub will it LAST? NOT LONG ENOUGH . HARD FORMATION 728 VERY ARACTURED & ROUGH TO DRILL BASALT is POUROUS iN PLACES VERY SMALL CRYSTALS COULS 243 BEGOOD HZO HERE, 8-12 FT/HR. AVG. 728-743 BLACK BASALT W/ ALOT of BROWN CAPY A SAND PENT. RATES EXCELLENT 20.30 FT/UR AVG. 743-900' DRILLING is PRETTY UNIFORM HERE. PENT RATES ARE FAIR 8-20'FT/1000 SOME FLUID LOSS EXPEXIENCED in FRACTURED ATEAS. BASALT /VOLCANIC ROCK

Pg 4 of 4 145 Contra ARE COMMONPLACE NOW, STILL SEEING STRINGERS OF BLACK SAND & LENS OF WHITE +BROWN SANDI CLAI, BUT IT'S NOTVERY EUDENT 900 IN THE DRILLING STRING WT. is AROUND 28 K RUNNING SROUND 20.000 ON BIT, ROTARY iS TURNING 35-48 RS Some VERY ROUGH AREAS. <u>968</u> GRAY ROCK A SH ALOT Some OF LITTLE BROWN CLA BLACK BASALT PENT RAFES STILL AROUND 8-20 FT./HR 968 NO FLUID LOSS the HERE 968-1000 T.D. - BLACK BASALT Some BROWN CLAY MIXED ASH/CLAN MOSTLY MISU SomE ERV 1000 POUROUS BASALT ENCOUNTERED MAN BE LOSING SOME FLUID ALOSE TO THE BOTTOM, PENT. RATES 6-15 FT/JR LELEND FINE TO MED, SAND 2 2 2 2 0 000 0 0 0 0 0 0 0 0 0 0 0 0 MED. TO LARGE COBBLE 60 \bigcirc BOULDERS DIFFEREN XXXXXX CLAY VARIETIE mastly GR ASH/CLA HASD ROCK FORMATION EXTREME HASO ROCK SANS/CLA VOLCANIC GRAY ROCK


APPENDIX B-Test Pumping-Field Data and Graphs

DATA AND FIELD PLOTS FOR PW-1 (west)

						UNT	Y			WF	II TE	SSA PWI
	DEPART	DIVIS	ION	BLIC W	ORKS	PUMPING	TEST		4	PU	MPING)	OBSERVATION WELL
[উ	TYPE of I	PUMPI	NG TES	т	TEPPE	AWDOWN TEST			-	PAG	MPING	RECOVERY DATA
سمز	HOW Q M	IEASUI	RED	_ <u>5"×1</u>	B ORIFICE	EVER					·C	
	HOW WL'	MEA	SURED	TRANS	SDUCER Z	50 PSI TEST 2	L	M.P. for	WL's	WL STI	LLWEL	- elev
	PUMPED								T PUMP,		E	50wrt
							% SUBM	ERGENCE	E: initic	ין <u> </u>	; pumping	
	DISTANCE	from	PUMPE		· · · · · · · · · · · · · · · · · · ·	•		PUMP ON	i: date.	5/22	/00_1	
					7			PUMP OF	F: date		t	ime
	TIME t= at t'=0			· ·	WATER LEVE				WAT	TER DUCT.	COMMENTS	
	ME mins hrs			t / t ¹	READING	CONTRACTOR OF CONTRACTOR	WATER LEVEL	(Sor S'	9/s	h"		(NOTE ANY CHANGES IN OBSERVERS)
		1			333.50	STEPI		53.71		25.5	500	
		Z	<u> </u>		346.44			66 65		23.3	500	SWL TH1 282.24
		3			329.26			49.47	├	<u> </u>	+	
		4			327.97			48 18	· · · ·	┢───		Q1

1		2					- JJ. TI		25.5	150	O SWL TH1	282.Z
				346.40			66 65	<u>.</u>				
<u> </u>	\leftarrow	3		329.20			49.47	+			QL	
┝	\leftarrow	4		327.93			48.18					
	\leftarrow			327.89			48.05					
	\leftarrow	6		329.04			49.25					······································
	\leftarrow	7		329.35	·		49.56					
	\leftarrow	8		330.14			50.35			+		
	\leftarrow	9		330.61			50.8Z		25'h	· 1/.		
	\leftarrow	10		329.92			50.13	+	1010	1		
	$ \mid $	12		331.39			51.60		243/4	+	91	
	$ \leftarrow$	14	_	331.99			52.20		127/4	+	<u>@</u> î	
	\mid	16		332.21			52.4Z	+	+	+		
	\mid	18		333.19			53.40	<u> </u>	+		TH 100	
		20		334.91			55.12	9.10	+	+	THI 288.52	
		24		335.48	1		55.69	1.10	┼──	<u> </u>	SAND O.3 ml.	A ZUALINTE
	\square	28		335.86	1			+	 		+	
	\square	30		336.52			56.07			+		
	\geq	34		336.77			56.73	<u> </u>	25 1/2			
		38		337.27			56.98	<u> </u>	╂───	╂───		
	\square	40	1	338.06	<u> - - - - - - - - -</u>		57.48	<u> </u>	 			
	\square	44	1	338.53	<u> </u>		58.27		 		<u></u>	
	\geq	48	+	338 90			58.74		25/2-24	ľ	QDK	
	\geq	50	<u> </u>	339.44			59.11		ļ		ļ	
050	\geq	60	+				59.65		25+		Q+	
100	>	70	+	340.82			61.03				at	
110	>	80	+	341.14			61.35	8.14				
120		90	+	341.42			61.63					· · · · · · · · · · · · · · · · · · ·
123	\leq		╉┈╍┥	343.30	·····	_	63.51	7.9				
	$ \rightarrow $	98	╉───┤								at	
30		100	+		STEP II				37"	604	78min=29	
	\leq	102	2	357.88			72.09				Sand=0.35~1	
/	\leq	104	4	352.44							CARDE DISP'T	U IUY NI
	\leq	106	6	353,82			74.03					
	\leq	103	8	355.52								
40	\leq	110	10	354.01			74.22	t			<u> </u>	
12	\leq	112	12	355.27	· · · · · · · · · · · · · · · · · · ·		74.58				01000	
	\leq	116	16	356.21		++	76.42				Q4@1145 3	3
	\square	120	20	356.97	······································	+	77.18				······	
		130	30	357.84		╡───┼	78.05					
		140	40	358.72		┽╍╍╍┝						
			<u> </u>				78.93	7.6				

Le }	W	AS	5H	OE		JUNT	Y				
2	DEPAR	TMEN								WELL	TESSA PWI- (west)
N	UTILIT	'Y DIVI	SION			PUMPING	TEST	DAT	Ά	PUMPIN	OBSERVATION WELL
19	TYPE o	f PUMP	PING TE	IST	IFPU	lawdown /	195 T			DACE	7 .
U	HOW Q	MEAS	URED		<u>-</u>			M.P. for	. WL's		
	HUW W		ASURE	D			<u> </u>	DEPTH	of PUMP	AIRLINE	elev wrt
									JEDGENO	=	
									مقساس د الأ	C177101	
—	DISTAN			ED WEL	·L			PUMP O	FF : date	· · · · · · · · · · · · · · · · · · ·	_ time
	<u>t =</u>	TIME at	t'=0		STAT	WATER LEVE	L DAT			WATER	004445470
	VE mins	hrs t	11ME		READING	CONVERSIONS CORRECTIONS	WATER	S or S'	Q/s	0	(NOTE ANY CHANGES IN
		150	3		359,41	- OOIIILETIONS		<u> </u>	<u> </u>	╉──┼┷	OBSERVERS)
		16	0		36.29		<u> </u>	79.62			
		170	0		360,58		<u> </u>	80,50			
125	50	18	0		361.74		<u> </u>	80.79			3 8 //
	\square	190	2		362.84			81.95		Q=	387
	-	19	8		363,56			83.05		<u>a</u> =	38
	<	20	0			STEPIIL		83,86		<u> </u>	38" 50' = 690 ypm
	$ \leftarrow$	200	2		369.52			89.73			30 = 690 ypm
	\checkmark	204			371.78			91.99		┝── <u></u> ├┈╸	+
	\leftarrow	206			372.44			92.65	<u> </u>	<u> </u>	
	\leftarrow	208	<u>د</u> ل		372,32			92.53			
	\leftarrow	210			372,91		Г	93.12			
	\leftarrow	220			374.58			94.79			
-		230			375.96			96.17			
135	\sim	240		┥──┥	375.89		F	96.10			
	\leftarrow	250		∔İ	377.84			98.05			
	\leftarrow	260			377.06			97.27			
	\leftarrow	270	+		377.31			97.52			
	\checkmark	280			377,90			78.11			Sand = 0,40
	\checkmark	298			378,97			<u>81, Pf</u>			
1450	\checkmark	1	+		3 79. 44			19,65	7.0	Q= :	1.5
1450	\sim	300 302	2		86,66	STEPIV		106.87		0=1	5 = 800 gpm
	\square	310	10		387,88		1	08.09			J
	\square	320	20		390,11			110.32			
		330	30		392.37			112,33		65-66"	
		340	40		393.21			12.58			
1640		350	50		394.00			13,42			TH1 303 03 @ 346'
1550	\geq	360	60		395.97			14.21	7.0		
1600	\geq	370	70		395.63			15,57		66"+	
1610	\geq	330	80		396.91			17.12		65 1/2+	VALVE CLOSE TO WIDE OPEN
1620		390	90		396.88			17.09		65-66	
1630		400	100		317.98			13.19	10.92		
L							<u> </u>	13.11	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		
<u> </u>											
											· · · · · · · · · · · · · · · · · · ·
	\leq										
L	\geq									-+	
			_				I				

WASHOE COUNTY

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

	VELL	TESSA	PW1
\langle	PUMPIN	G/ OBSE	RVATION WELL
\langle		G)/ RECO	VERY DATA
	PAGE _		OF <u>4</u>

	TYPE OF PUMPING TEST CONSTANT DISCHARLE		
Water Resources	HOW Q MEASURED		
·	HOW WL'S MEASURED PRESSURE TRANSCULER	M.P. for WL's <u>TOP PVC</u> elev.	
	PUMPED WELL NO.	wrt_	
	RADIUS of PUMPED WELL	% SUBMERGENCE: initial pumping	
	DISTANCE from PUMPED WELL	PUMP ON: date 5/23/00 time 1045	
		PUMP OFF: date 5/26 /00 time 1045	

		a	t t'=C)	STATIC	WATER LEVEL		ATA			ATER	COMMENTS
		LAPSED 1	1145	T			_ 202.0	2		PRC	DDUC.	T COMMENTS
1016	mins		t'	t /ť	READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	Sor S'	9/5	h''	Q	(NOTE ANY CHANGES IN OBSERVERS)
10-16	\vdash	12		 	332.77			50.72		37"	604	
<u> </u>	\vdash	$\frac{1}{3}$			337,80			55.75	1	+	1001	
	\vdash				338.96			56.91			1	
	\vdash	5			338.0Z			55.97			+	
	\vdash				339.56			57.51				
	>	7			340.12			58.07				<u>+</u>
	\sim	8			341.07			59.02				
		4			342.76			60.71				<u>+</u>
055	\geq	10			343.27			61.22			1	
	\sim	12			343.71			61.66		1		
+	>	14			345.21			63.16				
	\geq	16			346.50			64.45				
	>	18	+		347.35			65.30				
+	>	20			348.01			65.96				
+		26			349.01			66.96				
115	>	30			350.05			68.00				
<u> </u>	\geq	36			350.93			68.88		37%		al
-+	>	40			351.62			69.57		37'4"		Q1@ 1118
+	>	46			353.07 354.54			71.02				
+	\geq	50			354.51			72.49				
45	0	60			354.70			72 46				
55	\geq	70		the second se	356.74			72.65				
205	\geq	80			357.40	·		74.69		37'/z-	38'	ar
215	\geq	90			58.28			75.35		37"		Q↑
	\geq	100			59,69			76.23				
45 1	0 2	120			61,10			77.04		37"		903
		140			62.77			79.05				
	\geq	160			64.18			80.72		37"		
	2/3	180			65.28			82.13				
	\geq	2.55			64,56			83, 23		37 344"		900 Qt, Up+ Down
	\geq	220			66.19			82.51		37		
145 9	24	240			67.48			84.14				
	\geq	260			68.39			85,43				
	\geq	280			68.76			86.34		37 1/2		
45 0	25	300			68.58			86.71				
05	\geq	320			70.58			8653		371/2		ATHE PIMPER SAYS FLOW HAS BEEN CLISER TO 57 1/2"
		340			69.58			88.53				
4-0	6	250			69 99			<u>8523</u>		37/4		
	\rightarrow	2×0			41.42			87.94		<u> </u>		
		400			72.31			5.33	ť	7/14		
· 3	2	920			72.19			20.29				
		140			72.40					7%		
	_	160			2.65			0.35				
	5				122			9.64 7.5.17		7/2		P.11

WASHOE COUNTY

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

VELL	TESSA	Pul
PUMPING	OBSER	AVATION WEL
PUMPING	A RECO	VERY DATA
PAGE	<u>z_</u> (DF <u>4</u>

st and the second s	TYPE OF PUMPING TEST		
	HOW Q MEASURED	M.D. for Mills	
	HOW WL'S MEASURED	 M.P. for WL's	elev
	PUMPED WELL NO.	DEPTH OF PUMP/AIRLINE	wrt
	RADIUS of PUMPED WELL	% SUBMERGENCE: initial	pumping
	DISTANCE from PUMPED WELL	PUMP ON: date	time
		PUMP OFF: date	time

TIME t = at t'=C	W STATIC WATE	ATER LEVEL DATA	WATE	
CLOCK ELAPSED TIME			PRODU	
TIME hrs t t'	t /t' READING CONVE	ERSIONS or WATER RECTIONS LEVEL S or S'	h"	Q (NOTE ANY CHANGES IN OBSERVERS)
500	374.57	2.52	37.5	in Observers)
945 09 (40)	374.26	92,21		
	375.04	92.99	37.34	
		91.70		
2047 0 10 600	376.20	94.15	38	
40	374.57	92.52	-	
690	375.70	94.04	32/4	
115 1160	377.08	94,48		
680	377.40	90.03		
800	377.40	905	37-34	
224- 212720	377.99	95.35		
740	376.77	94 - 14 94. 72		
760	378.43	96.38	37%	
2.45 12780	379.09	47.04		
800	377.13		38/4	
20	278.34	96.24		
19 340	378.46	96.41		
750	377.68	9563	36%	
820 1147 STE 960	178.27	96.22	27 1/4	
9.3	377.7/	96.22 95.6		
	377.90	/5.85		
11 26 21 +	376.17	94.12	- 1	
	77.30			
322 .000			12	
135 1020	78.7/	76.10		
1240	78.20	96.56		
102	2:1.40	92.25		
	7.69	97.61		
	(*1.07)	75.02		
1.25 1180	360.06	98.01	<u> </u>	
655 1210	380.31	98.26		
725 1243	379.87	97.82		
255 1270	379.81	97.76		
	379.77	97.73	36314	
<u> </u>	37978	97-78 99-58		shift change
135	381.13	99.08		
1420	378.84	96.79		
	381.29	99.24	341/2	4 = 37
				P.12

WASHOE COUNTY

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

DI MOING TEST DATA

VELL /	essa	PW	ſ
CUMPIN	Q/OBS	ERVATIC	N WELL

CUMPING RECOVERY DATA PAGE _____ OF ____

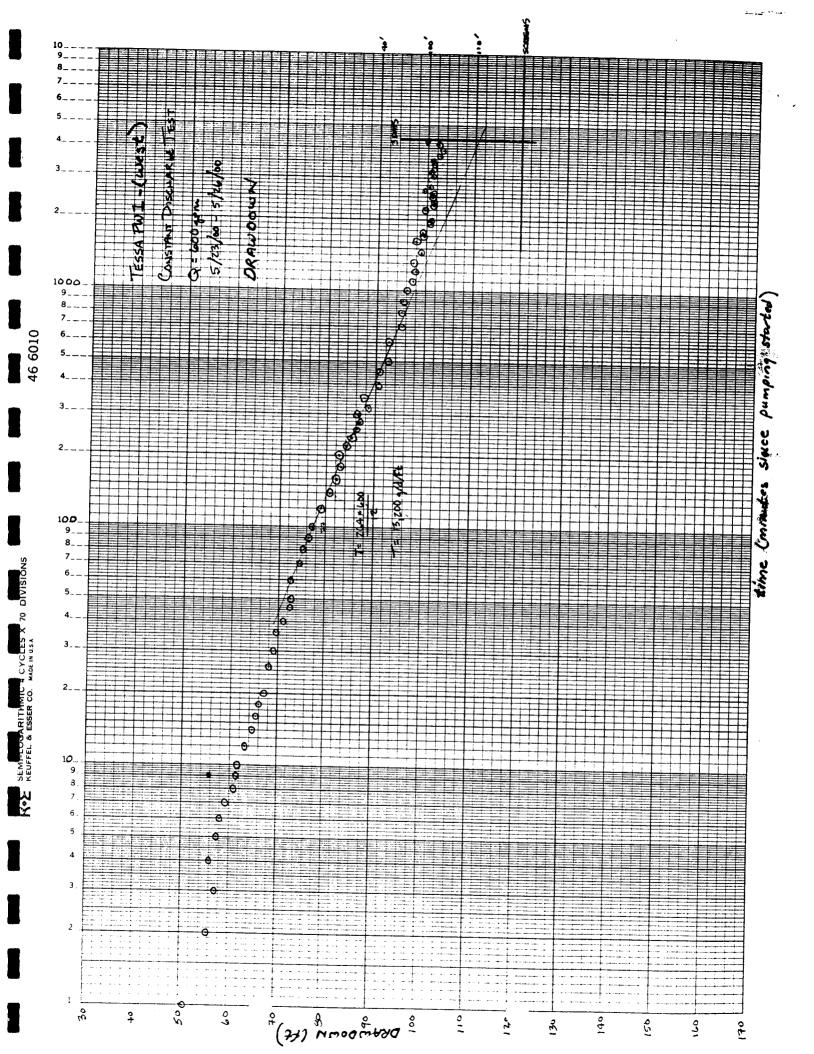
	TYPE OF PUMPING TEST Constant Q	
Water Resources	HOW Q MEASURED	
	HOW WL'S MEASURED M.P. for W	W
	PUMPED WELL NO DEPTH C	OF
	RADIUS of PUMPED WELL % SUBMI	IEF

DISTANCE	from	PUMPED	WELL	
			TTLLL	_

	M.P. for WL's	elev
•	DEPTH OF PUMP/AIRLINE	wrt
	% SUDMERGENCE: Initial	Dumping
	FUMP UN: date _3/23/88	time /045
	PUMP OFF: date	time

		=	TIME at	ť=C)	STATIC	WATER L	EVEL D	ATA			ATER	COMMENTS
<u>TIM</u> /0 5	-	EL mins hrs		ť	t /ť	READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	Sor S'			Q	(NOTE ANY CHANGES IN OBSERVERS)
112		\geq	1480			381.29		99.24			1	1	IT OBOEITVENS)
115		>	1510			378.96		96.91					
122		\geq	1540			380.31		98.26	-			1	
125		\geq	1570			381 .4						1	
132		\geq	1600			380.31						†	
135		\geq	1630			379.72		97.67				<u> </u>	
142	_	>	1660			362.01						<u> </u>	
145						381.51		99.HE				<u> </u>	
155	_		1690			381.51		99.46				3710	EEC 3:30
	4	\sim	1750			381.00		98.95				17:10"	CEC 5.50
1655	+	\leq	1780			382.45		100.40				37 /2	EE @ 4:00
• > >	+	\leq	1210		the second value of the se		11	98-95					
1755	+	\leq	1840			380.38		98.33					
()))		\leq	1870			320 84							
30 1	+	\leq	1900			312.89		100.84					
25 5	+	\leq	1930		·	380.72		<u></u>					
0155		\leq	1960			381.47							
955		\leq	1990			382.26		100.21					
025	-	\leq	2020		1	23.14		101.09					
155			2110		1	80.82							MW: DVMpers shift
			2140			81.85					37		left site
-55			2170			382.45					714		905 6600
		\leq	2 2 6 0			81.76		99.71					
355			2235			381.66							
		7	2260			83.98							
55 ه			290			83.89							
		\overline{z}	320			82.48		101.94					
55	\Box		350			83.80					_		
			:383			83.36							
155			413										
	F		440			83.47		01.62					
355	\vdash	_	-7.			23					+	+	
	\vdash		523			82.47							
155	F		<u>,</u>			13,53		101.53					
	$ \leq$					84 1.							
55	<		<u>- e </u> 51		_	33 👾							
	\vdash	_				3.17)	01.12				<u></u>	
55	\leftarrow	_	620			32.92							
<u>, , , , , , , , , , , , , , , , , , , </u>	\leq		650			11,32		11.27					
	\leq		660	<u></u>		83.45					7"	 - ,	
1	\leq	_	740			32.35		0.30		<u> </u>	<u> </u>	`	TRE LY Site 0740
	\leq		200			13,23							
-	\leq		260			2.57						<u> </u>	
	\leq		920		35	8.60 J	/ /7	255		<u> </u>			
_	\leq		930		31	13.31							
1	/	- 3	010		2	53.17		12					

DEPARTMENT OF WATER RESOURCES UTILITY SERVICES DIVISION


NELL_		<u>sa</u>	PwI
PUMPIN	G∂08	SERVA	TION WELL
PUMPIN	G7 RE	COVEF	RY DATA
PAGE	_4	OF	4

Department of
6 K.
*
Water Resources

	~		GIE3I	UA
TYPE OF PUMPING TEST	Constant	0		
HOW Q MEASURED				
HOW WL'S MEASURED				M
PUMPED WELL NO.				D
RADIUS of PUMPED WELL				%
DISTANCE from PUMPED WE	ELL			PI

M.P. for WL's	elev
_ DEPTH OF PUMP/AIRLINE	wrt
_ % SUBMERGENCE: initial	pumping
PUMP ON: date _ 5/23/00	
_ PUMP OFF: date _ 5/26/00	time 1045

		TIME	:		1	WATER I				<u> </u>		time045
	t =	at	t'=0	С С	STATIC	WATER LEVE	^{IL} <i>Z82</i>	1.05			ATER DDUCT	COMMENTS
TIME 135	hr	LAPSED T s t 3070	ť	t /t	READING	CONVERSIONS or CORRECTIONS		(Sor S	r	a/s		(NOTE ANY CHANGES
455		3130	 	+	384.27		102,20					IN OBSERVERS)
525		12:50	<u> </u>		382.13		100.08	1				ENI
1555		3110			383 23		101.18	1.			+	
///	\leftarrow	3190	·	ļ	384.52		112.47				+	
655	\leftarrow	3220		<u> </u>	385.21		103.16					
925		3250			382.82		100.77				37"	Ken
125	\leftarrow	3400		Ļ	383.42		101.37				12/	EÉ
	\leftarrow	3520		ļ	381.95		100.90		+		371/8"	the second se
155	\leftarrow	3550			383.04		100,99		+		13718	EE @ 2130
	\leftarrow	3700			384.71		102.66		- <u> </u>			
	\leftarrow	3880			385.40		103.35		+			
001	40	4120		ļ	384.14		102.09		+	5.9	<u> </u>	
925	70	4240			381.98		99.93		+	+2.7	2-11	0.0016
	\leftarrow	4300			384.71		102.66		+	+	3+14	@ 0945
		┟───┼				······································					├────┤	
	$ \leftarrow$	-							+	+		
	\leq								+	+		
	\leq									+		
	\leq								<u> </u>	+		
	\leq								<u> </u>	+		·
	\leq								<u> </u>	+		
	\leq									+		
	\leq								<u> </u>	┽───┤		
	\leq								<u> </u>	┼───┼		
	\leq								<u> </u>	┼───┼		
	\leq						·····			┥───┤		
									ļ			
										<u> </u>		
	\leq											
	\leq									├ ──── ↓		
	< 1									┝────┤		
	\leq									-		
	\leq									<u> </u>		
	$ \ge $											
	\leq											
	\leq											
	\square											
	\geq	~~										
	\geq											
	\geq									T		
	\square			+								
				+			<u></u>					
										1-		

	EPART FILITY PE of	MENT DIVISIO PUMPIN	OF PUI ON IG TES		ORKS	PUMPING	TEST			PAG	IPING / IPING	BSERVATION WELL RECOVERY DATA OF 4
- но	WQI	MEASUR	ED .	• <u> </u>				M.P. for WI	,			
					VIIB IICHN	s ave we		DEPTH of	DI IMD /		C	
- PU	MPFD		ALC 1	11-00				A/				
АЛ	0103 0	DT PUMP	ED WE					PUMP ON :	date _	5/23/0	00	time .
DIS	TANC	E from	PUMPE	D WELL	·		······	PUMP OFF :	date .		t	ime
t =	Т	IME at t	t'=0		STATIC	WATER LEVE	L DATA 284.4	7		WATER PRODUCT.		00000000
	ELA mins	PSED TI		+/+	READING	CONVERSIONS CORRECTIONS	WATER	(Ses'			0	the second se
1046		* ; · ·	<u> </u>	+		CORRECTIONS	LEVEL			 		(NOTE ANY CHANGES I OBSERVERS)
076	\sim	+			28497			0.50		ļ		
	\checkmark	2	+	I	285,67			1,20				
	\vdash	3	+	┼───┨	286.23			1.76				
	\leftarrow	4			286.71			2,24			 	
	\vdash	5	<u> </u>		287,12			2,65			ļ	
<u>.</u>	\leftarrow	<u>_</u>	 		287,47			3.00				
	<	7	<u> </u>		287,81			3,34				287.79 @ 7' SOUNDER
	<	8	<u> </u>		288.13			3.66				
	<	9	<u> </u>		288,41			3,94				
055		10	<u> </u>		288.66			4.19				
		12			281.17			4.70				
		14			289.58			5.11				
	۷_	16			<u>289,96</u>			5,49				
	۷	18			290,34			5,87				
		20			290.65			6.18				
	Ζ,	26			291.47			7.00				
	Ζ,	30			291.92			7.45				······································
	۷	36			292.52			8.05				
	۷	40			292,83			8,36				
	\leq	46		i	293.34			8.87				
	\leq	50			293.62			9.15				
	\sim	60			294.22			9.75				
	\leq	70			294.76			10.29				
	\leq	80			295.26			10.79				
215	\leq	90			295.70			11.23				
	\leq	100			96.08			11.61				
	02	120		- 1	296,78			12.31				
	\leq	140			197.38			12.91	-+			
	\leq	160		2	97.91			13.44				
545	23	180		2	98.42		1	13.95	-+		†	
	\square	200		2	98.80			14.33				
	\geq	220			99,17			14.70				
45	°4	240		2	99.52			15,05				
	\geq	260		2	.49.81			15,40	 			
T	\square	280			00.18			15,71				
545	2/5	300	1		300.40			15,96				
		320			100.7Z			16.25				
	\nearrow	340	+		00.9/			16.29				
4-0	26	360			01.03			16.56				
- r		380			01.29			K. 82	— -		-+	

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

Department of

TESSA
MW-1 (west
(DATA
4

PUMPING TEST DATA

	TYPE OF PUMPING TEST CONSTANT DISCHARLE TEST
Water Resources	HOW Q MEASURED
•	HOW WL'S MEASURED
	PUMPED WELL NOTESSA PW 1

	M.P. for WL's elev.
HOW WES MEASURED	
E THE LE NO	% SUBMERGENOE
	PUMP ON: date time
	PUMP OFF: date time

t =	TIME at ELAPSED T	ť=C		STATIC	WATER L	EVEL D	ATA F				COMMENTS
	t 400	t'		READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	S or S'			Q	(NOTE ANY CHANGE
7450	F 420			301.18		17.0(<u> </u>		IN OLOSENVENS)
	F 720 440			301.73		17.26			+	┝	
	160			301.92		17.45	·				
8450	780			02.04		17.57			1		
	500			02.17		17.70					
	120			0237		17.92					······································
1:450	570			82.50		18.11					
	560			02.71		1824					
	1380			08.20		18.33					
2.450	0 600			03.02		18.55					
	120			23.11		18.65					
	640			23.27	······································	18.00	T				
450	1 LO			2343		18.96					
	1280	<u></u>		23.56		19.08					
	700			23.68		19.20					
4501	720			03.99		19.30					
	740			23.94		19.46					
	760			27.09		19.46					
1-01	780			7.22		17.62					
	360			4.28		19.75					
	1820			1.2 1.2		19.81					
15 0 19	840			4.38		19.85					
	360			74.47							
	880			1.44		20.00					
1500	900			24.54		19.97					
	920			24.54		20.07					
	1910		10	2457		20.07					
45 2 15	960		120	17.57		20.10					
	980			4.57		0.10					
\leq	1000			01.64		0.10					
	1030			4.75		219.25		<u> </u>			
	1050			54.35			<u> </u>				
	1050		20	491		20,38 20.48					
	1/20		30	5.10		$\frac{20.93}{22.43}$					
	1155		20	5.26		<u>20.71</u>					
25	1130		30	5.23		0.76		<u> </u>			
55	1210			5.26		0.79					
25	1240			5.17		0.70					
	1270		305	5.39		0.92				<u> </u>	
25	1300		309	5.36		0.59			<u> </u>		
55	1330		305	.32		0.85					
15	1360		305	.39		0.92					
5	1390			-36		0.89					
5	1420		305	.42	7,	0.95	——— <u>+</u> —				ТНТ

TESSA MW-1 (west) NELL Tessa T HI

PUMPING / OBSERVATION WELD

PAGE _____ OF ____

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

HOW Q MEASURED

HOW WL'S MEASURED _____

PUMPED WELL NO. _ RADIUS of PUMPED WELL DISTANCE from PUMPED WELL

PUMPING TEST DATA TYPE OF PUMPING TEST Constant Q

Ľ) cpantinen	t of
Ĵ		
	Sar	
W	ater Resour	TC:S

	M.P. for WL's	elev.
······	DEPTH OF PUMP/AIRLINE	wrt
	% SUBMERGENCE: initial	Dumping
	PUMP ON: date 5/23/00	time 1045
	PUMP OFF: date	time

	L	t =		ť=O		STATIC	WATER L	EVEL D - 284	ATA 7.47			TER DUCT	COMMENTS
1		mins hrs	APSED T	ME ť		READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	Sor S'			Q	(NOTE ANY CHANGES
	1055		1450			305.45		20.98					IN OBSERVERS)
		<	1480			305.45							
	1155	<	1510			105.45		20.98	· · ·				
	1225	\sim	1540			305.61		21.14					
ĺ	1255	\leq	1570			305.61							
	1325	\leq	600			305.61		21,14					
	1355	\leq	1630			305.67		21.20					
∤	1425	\leq	1660		· · · · ·	305.70		21.23					
ł	1455	\leq	1690			305.67		21.20					
	1555	\leq	1750			305.70		21.23					EE
		\leq	1780			305.77							
ł	1655	\leq	1810.			05.83		21.36					
ļ		\leq	1840			05.77		21.30					
Ļ	1755	\leq	1870.			05.80							
Ļ	1825	\leq	1900.			05.86		21.39					
		\leq	1930			\$5.83		2031		<u> </u>			
	1425	\sim	1960			05.92							
L	1955	\sim	1990			05.92		21.45					
Ŀ	2025	\geq	2020			5.95							
	2155	\geq	2110			6.02		21.48					
E		\geq	2140			6,02		21.55					
Γ	2235	>	2170			5,99							908
Γ		\geq	2200			06.02							
	2355	>	2230			06.05		21,55					
Γ		\geq	2260			6.11							
L	0055		2290		_								
F		the second s	2320		the second value of the se	06.21		21.74					
7	0155		2350			06,18							
F		_	2380			6.21							
F7	255		2410			06.18							
F		_	2440			06.21		21.74					
17	2355					06,21							
H			1470			6.21							
1	455	\leq	2500			6.21		21.74					
۲			2530			06.21							
	ert-		2560		the second se	6.24							
-	555		2540			6.24		21.77					· · · · · · · · · · · · · · · · · · ·
L			2620			6.27							
3-			2650			6.21							
0	725		2680			6.24		27.77					
			740		301	6.11							ob Lu site
1-			800		30	6.21							
15	525		860		30	6.13		21.71					
		$< 1^{2}$	920		30	6.65							
			GRC			6.49							
1	255	15	010			6.46		21.99			1		

•	· ·	IESSA	MW-1	(west)
Ĺ	VELL TOSSA	TH	/	-)
	PUMPING KOBS	ERVATION V	VELL	
<	PUMPING DREC	OVERY DAT	A	

DEPARTMENT OF WATER RESOURCES

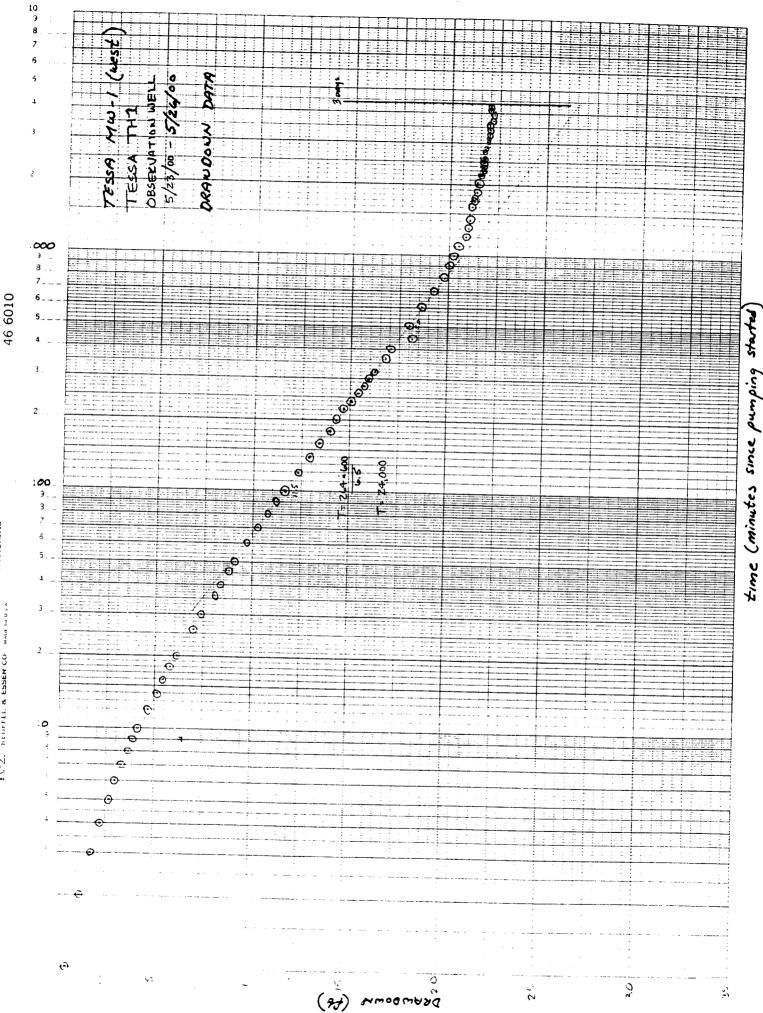
HOW Q MEASURED _____

UTILITY SERVICES DIVISION

HOW WL'S MEASURED _____ PUMPED WELL NO. _____ RADIUS of PUMPED WELL ____

DISTANCE from PUMPED WELL

	<u>PUMPING</u>	TEST DATA
TYPE OF PUMPING TEST	(protant Q	


Department of
Water Persona

)		
	M.P. for WL's	elev
	DEPTH OF PUMP/AIRLINE	wrt
	% SUBMERGENCE: initial	pumping
	PUMP ON: date _ 5/23/00	time/0 45

PAGE _ _ OF _ _ _

_ PUMP OFF: date _5/26/00 time _1045

TIME WATER LEVEL DATA STATIC WATER LEVEL 284.47 WATER t = at t'=O COMMENTS PRODUCT CONVERSIONS or CORRECTIONS WATER t /ť TIME t READING ť Sor S' (NOTE ANY CHANGES hrs LEVEL Q IN OBSERVERS) 1355 3070 306.55 22.08 1455 EM . 3130 306.43 21.96 1525 3160 306.40 21.93 3190 306.46 21.99 3160 306.40 21.93 3190 306.46 21.99 3220 306.43 21.96 3250 306.43 21.96 3400 306.49 22.02 3520 306.43 21.96 3700 30665 22.18 3880 306.74 22.27 4120 306.46 21.99 4240 306.49 22.02 4300 306.52 22.05 2

WASHOE CUNTY

DEPARTMENT OF WATER RESOURCES UTILITY SERVICES DIVISION

VELL IESSA PW1
PUMPING) OBSERVATION WELL
PUMPING RECOVERY DATA
PAGE OF

Department of
à ŵ.
S.
Water Resources

	PUMPING TEST DATA
TYPE OF PUMPING TEST	CONSTANT RECOVERY
HOW O MEASURER	- CONSTRAT DECOVERY

5	HOW Q MEASURED		
	HOW WL'S MEASURED PRESSURE THE	M.P. for WL's TOP PVC WELL elev.	
	PUMPED WELL NO. PW 1	DEPTH OF PUMP/AIRLINE	
	RADIUS of PUMPED WELL	% SUBMERGENCE: initial	
	DISTANCE from PUMPED WELL	PUMP ON: date5/23/00 time 104	
-		PUMP OFF: date time04	

	٦	IME			1				P OFF: da	/		time045
t = 4320 at t'=O			STATIC	WATER LEVEL DATA STATIC WATER LEVEL 282.05					TER	COMMENTS		
CLOCK TIME		t	ME ť	t /ť		CONVERSIONS or CORRECTIONS	WATER				DUCT	
1046		-321	1	4321			LEVEL		102.66	REC	Q	(NOTE ANY CHANGE IN OBSERVERS)
		322	2	2161				30.20	<u> </u>	┼───	<u>├</u>	
+		323	3	1441				43.68		60	<u> </u>	
+		324	4	1081				42.86		58	┝	
		325 326	5	865				41.86		<u> </u>	-	
+		527	6 7	721	323.00			40.95		<u> </u>		
	~1	528	B	618	322 15			40,10				
		529	9	541 481	321.36			39.31				
55		30	10	433	320.70			38.65				
		32	12	361	320.07			38.02				
		34	14	310	319.01			36.96				
			the second se	271	317.74			36.01				
				241	316.55			35.19				
05	43	40		217	315.89			34,50		_		
	43	44 -		181	314.76			33.84		67		
	43	50		145	313.85			32.71				
	43	54 3		128	312,53			31,80				
	43	0 4	70	109	311.46			30.48				
	43	the second s	14	99	310.83			29.41		71		
	43	the second day of the second d	0		309.95			28.78				
-+-	43		54	81	309,42			27.90				
-+-	43		_		308.66			<u>37,37</u>				
-+-	436	and the second division of the second divisio	4		308,19			26.61				
-+	43			53	307.53			25.48				
	43	the second se			307.09							
$- \not <$		00 80		55	306.52			24.47				
-		4 84	-		306.14							
+	441	0 90		_	305.61							
+	the second se	+ 94		3	05,26		1					
-		> 12 c		<u>4</u> 3	04.79		6	2.74				
+			the second se		03.51			<u> </u>				
<		> 140	<u>- -</u>		02,06		3	0.01	5	7+-		
+	450	0 180			00,9L					<u></u>		
	452	> 200	2		99.98							
\square		> 220			18.28		1	1.05				
\square		240			47.56							
\square		260		-12	96.90							
\square		28			16.27							
+		300			15.67							
+		340		_	14.63		/3	62				
\leftarrow	4720	400	12		3,28							·····
\leftarrow	4760	440	,		2.49			.23				
\leq	1820	500	10		1.49							
	_	540					19	.40	1			TESSA PUI Recovery

1	willer a
3	
1	

à .

4 Water Resources

27

UTIL

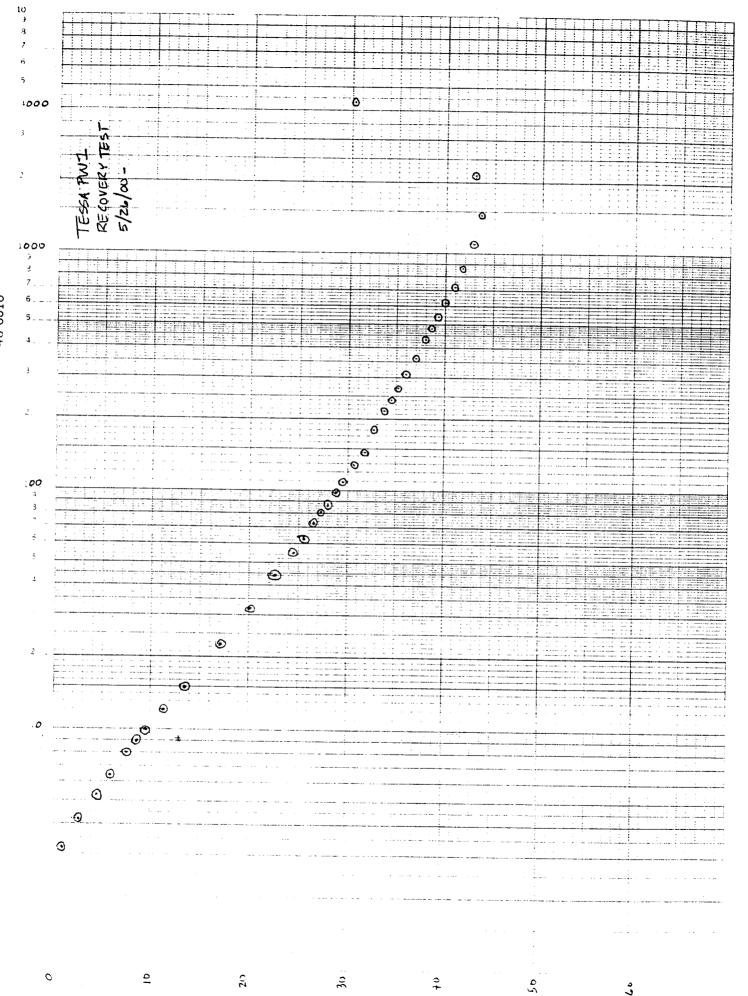
WASHOE COUNTY

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

PUMPING TEST DATA

TYPE OF PUMPING TEST _ Kecover	
HOW Q MEASURED	M.P. for WL's elev
HOW WL'S MEASURED	
PUMPED WELL NO	
RADIUS of PUMPED WELL	
DISTANCE from PUMPED WELL	PUMP ON: date time


TESSA PWI

CUMPING DOBSERVATION WELL

PUMPING / RECOVERY DATA PAGE ________2

VELL

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			TIME		<u> </u>		WATER LI	EVEL D	ATA		WA	TER	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>CI OC</u>	t =) T	STATIC			,05				COMMENTS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TIME	mins	t	ť			CONVERSIONS or CORRECTIONS	WATER LEVEL	Sors			Q	(NOTE ANY CHANGES IN OBSERVERS)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		\leftarrow				291.49							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\leftarrow				7. 70.6/							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\leftarrow	14440		7.9				7.77				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			+										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		\leftarrow	517.		<u> </u>								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		\leftarrow	1/20		6.4				5.91				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		\leftarrow	1020										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\leftarrow	5320		5.5				4.43				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\leftarrow	╉────		<u> </u>								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,	\leftarrow	 		<u> </u>								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	′ ├───	\leftarrow	61			28497							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\leftarrow	2650		4,2				2.80				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<u></u>										MW 0930
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			 										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\leftarrow											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\leftarrow							1.94				NW 1258
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\leftarrow				the second s							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\vdash										1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\leftarrow							1,29				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \vdash $						<u> </u>				_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< >			2								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\leftarrow							1.00				768-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\leftarrow											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\sim								1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\sim											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\vdash							0.25				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
29:0 281.76 31 CU 281.64													
31 60 281.64		\sim		1860	<u> </u>	281.92			0.13				Mul 10480-5-28
						281.76							
				5160		281.60							
	<u> </u>												
	 												
	i												
						<u>+</u> _							
													
			<u> </u> -		+		<u> </u>						
	L		<u>l</u> _			l_							

46 6010

HMMM TO LEAVE

coartment of

WASHOE COUNTY

DEPARTMENT OF WATER RESOURCES UTILITY SERVICES DIVISION

NELL TH1 PUMPING /OBSERVATION WELD PUMPING / RECOVERY DATA

PUMPING TEST DATA

Water Resources

TYPE OF PUMPING TEST CONSTANT RECOVERY HOW Q MEASURED ____ HOW WL'S MEASURED PRESSURE THANSDUCER PUMPED WELL NO. ____TESSA PW1_

RADIUS of PUMPED WELL

DISTANCE from PUMPED WELL

•	M.P. for WL'S TOP of CASING	elev	
-	DEPTH OF PUMP/AIRLINE	wrt	
	% SUBMERGENCE: initial	Dumping	
	PUMP ON: date 5/23/00	time	
	PUMP OFF: date _ 5/26/00	time 104.5	

	TIME t = 4320 at t'=O					WATER LEVEL DATA STATIC WATER LEVEL 284,47					TER DUCT	COMMENTS
	mins hrs	t	TIME t'	t /ť	READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	S or S	22.05	70 Rec	Q	(NOTE ANY CHANGES
1046		4321			306.11							IN OBSERVERS)
	\sim		Z		305.39							
		1	3		304.91			·				
	\geq		4		304.57					 		
	\geq		5		304.25				<u> </u>			
	\geq		6		303.97				<u> </u>			
	\leq		7		303.68				<u>├</u>	┝────┤		
	\sim		8		303.43							
	\sim		٩		303.21							
			10		302.99							
	\langle		12		302.61							
	\langle		14		302.23							
	\langle		16		301.92							
			18		301.63							
	\sim		20		301.35							
			24		300.88							
	\geq		30		300.25							
			34		299.90							
			40		299,31							
			44		299.08							
	\geq		50		298.67							
	>		54		298,42							
		4300	60		298.07							
	\geq		64		297,85							
			70		297.56							
	>		74		297.38							
			80		297.06							
			84		296,90			· ·				
			90		296.65							
	$ \rightarrow $		94									
	$ \rightarrow $				296.45					[
	$ \rightarrow $		102		296,24			11.77	47			
	$ \rightarrow $		140		295.55							
	$ \rightarrow $	the second s			294.11							
 +	\rightarrow		160		274.38					T		
├ ── ┼	\rightarrow		200		293,90							
+	$ \rightarrow $		220		293,49							
├ <u>├</u> -	\rightarrow				243.08							
┢╼╼╼╊╡	$ \rightarrow $		250		42,71							
┝──┾	$ \rightarrow $			2	92.36							
┝──┢	$ \rightarrow $		282	²	92.04							
┝──┾	\rightarrow				191.73							
├≮	\rightarrow		340		91.19							
┝╾╍╼┾╡	\rightarrow		400		90.90							
	\rightarrow		440		140.05							
	≤ 1		500	2	89,52							Tessa observation
		ć	540	0	39.17			4.70	72		• <u>4</u>	Recovery

VELL	au	ESSA	mw	I
	_			
			and the second se	_

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

PUMPING TEST DATA

PUMPING / C	USERWAT	ON WELL
PUMPING /	ECOVERY	DATA
PAGE 2	OF	2

Depar	tinent of
	i.
٩	
\gg	\sim
Water I	Resources

TYPE OF PUMPING TEST RECOVERY							
HOW Q MEASURED	M.P. for Wil's						
HOW WL'S MEASURED							
PUMPED WELL NO	SUBMERGENCE						
RADIUS of PUMPED WELL	PUMP ON: date						
DISTANCE from PUMPED WELL							

M.P. for WL's	elev.
_ DEPTH OF PUMP/AIRLINE	wrt
% SUBMERGENCE: initial	pumping
PUMP ON: date	time
PUMP OFF: date	time

	t =		E t t'=C)	STATIC	WATER L				1	TER	COMMENTS
		10050		······			- 280	F.47		PRO	DUCT	
TIME	mins hrs	APSED t	ť	t /ť	READING	CONVERSION or CORRECTIONS	WATER LEVEL	S of S'			a	(NOTE ANY CHANGES IN OBSERVERS)
	\leq	_	500		289.52				T	†	<u> </u>	
	\leq	<u></u>	560		289.04					1		
	\leq	<u> </u>	620		288.60			1		<u> </u>		
	\leq	Į	660		288.35					1		
	\leq		740		287.91				1	1		
	\leq		800		287.62				T	1		
	\leq	ļ	900		287.18			1				
	\leq	ļ	1000		286.87							
	\leq		1120		286.52					†		
	\leq		1210		286.30			1			······	
	\leq		1300		286.08				1			<u> </u>
	\leq		1360		285.92			1.45				
	\leq		1420		285.79			1				
	\leq		1480		225.70					├───┤		
	\leq		1540		2:5.60							
	\leq		1570		285.54			1.07				
	\leq		1630		285,44		· · · · ·					
			1690		2 35,39							
	\leq		1750		285.29							
	\leq		1810		285,19							
	\leq		1870		285,13							······································
	\leq		1930		285,10							
	\leq	6280			285.07			0.60				243
$ \longrightarrow $	\leq		2020		285.03							040
	\leq		2260		284.81							
	\leq		2500		284.62							
	\leq		2860		284.40			0.07				Mu 1048@5.28-0
	\leq	_	2980		127.31							101103-20 0
	\leq		3100		284.21							
	\leq		3160		284.18							
	\leq											<u> </u>
										<u> </u>		
	\leq											
												······································
	\leq											
	\leq											·
	\leq											
	\leq											
- +	\leq										+	······································
$- \downarrow$									+		+	
-	\leq								+			
				ſ					— †			

T'All recal

DATA AND FIELD PLOTS FOR PW-2 (east)

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

NELL TESSA PWZ PUMPING OBSERVATION WELL PUMPING ARECOVERY DATA PAGE __1 OF __3 ?

Department of e se Water Resourc

	<u> </u>	MPIN	<u>IG</u>	IESI	DAIA	
STANT	Q	Test	3			

TYPE OF	F PUMPING TEST	NT Q TEST 3	_	
	MEASUREDORIFICE		M.P. for WL'S TOP 1" STILL WELL	elev
HOW WL	'S MEASURED <u>PRESSURE</u>	TRANSDUCER	DEPTH OF PUMP/AIRLINE	wrt
PUMPED	WELL NO		% SUBMERGENCE: initial	pumping
RADIUS	of PUMPED WELL		PUMP ON: date 6/14/00	time 08/5
DISTANC	E from PUMPED WELL			time8/5

TIME t = at t'=O			WATER LEVEL DATA STATIC WATER LEVEL ZZ0.13			WATER PRODUCT		COMMENTS				
CLOCK	EL, mins hrs	APSED T		+ /+?	DE ADINIO	CONVERSIONS or	WATER					
TIME	hrs	t	ť	t /t'	READING	CORRECTIONS	LEVEL	Sor S'	h	Q	IN OBSERVERS)	
0816			L		276.64			56,51	29'	850	PWI - 281.70 (281.1	
		2			285.81			65.68			THZ - 222.63	
	\leq	3			302.99			82.86				
		4		L	309.82			89.69		[
	\leq	5			313.66			93,53				
5821	\leq	6			317.11			96.98				
		7			320.27			100.14				
		8			322.64			102.51				
	\sim	9			324.97			104.84				
0825	\sim	10			326.81			106,68				
0827		12			331.44			111.31				
0829		14			333.63			113.50				
		16			335,53			115,40				
		18			337.72			117.59				
835		20			340.81			120.68				
840		25			343,35			123.22				
2845		30			346.58			126.45			·	
0850	\sim	35			350,17			130.04				
0855	\sim	40			351.86			131,73				
2900		45			353.87		····	133.74				
0905	\sim	50			355.16			135,03				
2915	\nearrow	60			357,60			137,47				
1925	\backslash	70			361.15			141.02				
935	\backslash	80			362,37		· · · · · · · · · · · · · · · · · · ·	142.24				
5945		90			365,34			145.21				
0155		100			365,81			145,68		850 apm		
015	\sim	120			368.64			148.51		o o - um		
1035	\geq	140			370.97			150.84				
055	\sim	160			372.04			151.91			·	
115		180			374.30			154 17		· · · ·	<u> </u>	
120		185			373.81			153.68				
145		210			376.20			156 07				
205		230			377.00			156.87				
230		255			378.10			157.97				
300		285			379.57			159.44			,,,,,,,,,,,,	
330		315			381.26			161.13				
400		345			381.26			161.13	-+			
430	\sim	375			382.37			162.24				
500		405			383.26			16313				
530		435			383.55			1651)				
	45 7	465			384.70			164.57			- <u></u>	
		495			384.77			164.64		-		
		525			384.88		-	164.75			. <u></u>	
715		540			385.67			164 75				
745		570			386 35			:66.22			PWZ	

Dep

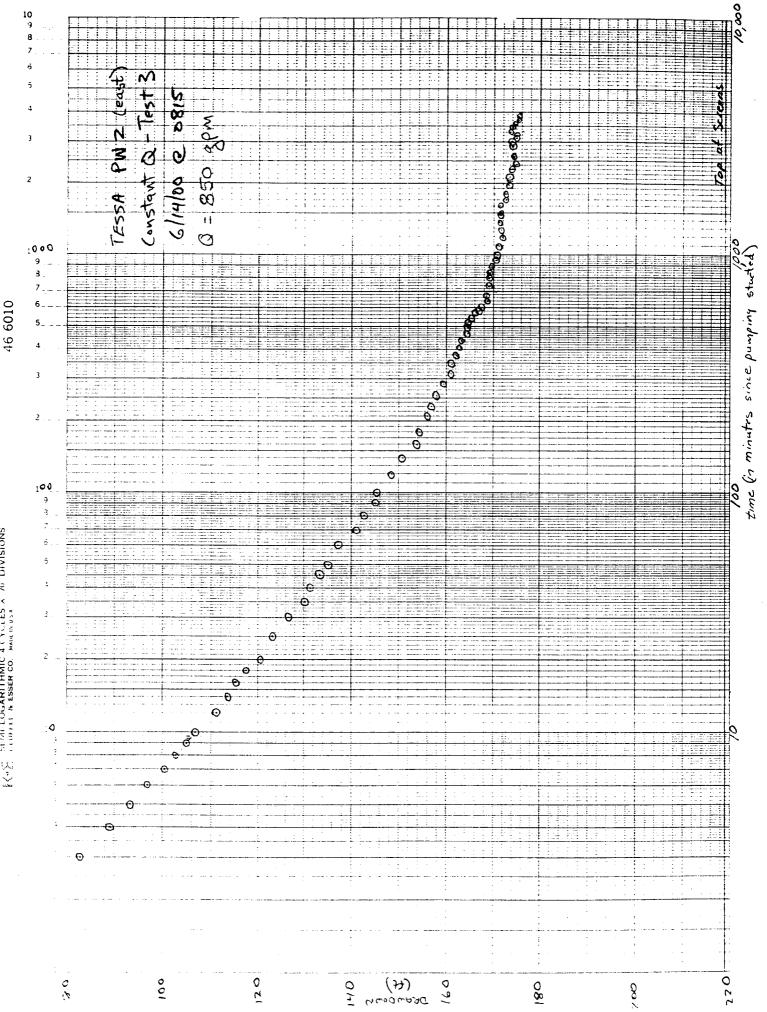
Ē

WASHOE COUNTY

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

PUMPING TEST DATA


VELL TESSA PWZ PUMPING/ OBSERVATION WELL PUMPING/ RECOVERY DATA PAGE ______OF _____?

Depertuised of	
	TYPE
Water Resources	HOW 0
	HOW V

OF PUMPING TEST _ CONSTRANT Q TEST 3

HOW Q MEASURED	M.P. for WL's TOK OF I" CASING elev.
	DEPTH OF PUMP/AIRLINE wrt
RADIUS of PUMPED WELL	% SUBMERGENCE: initial pumping
DISTANCE from PUMPED WELL	PUMP ON: date 6/14/00 time 0815
	PUMP OFF: date time

		TIME	:		<u> </u>						
	t = at t'=0					WATER LEVEL DATA			WA	TER	COMMENTS
				STATIC WATER LEVEL ZZO.13			PRO	DUCT			
CLOC TIM			IME t'	t /ť	READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	Sor S'		Q	(NOTE ANY CHANGES IN OBSERVERS)
180		585	L		387.10		-	146.97			Shift Change Was AT
181			L		387.99			167.86			7:00 pm not widnight En
18 3		415	ļ		387.81			167.68			en
1900		45			388.89			168.76			
19:20		675			388,17			168.04			· · · · · · · · · · · · · · · · · · ·
2,0) 2)3,)		705			287.85			147.72			
2100		735			389.03			63.95			
		725			389.41			167.48			
2200		795			339.03			148,90			
2230		825			389.14			169.01			
2200		855 885			389.40			169.33			
2330	the second s	915			389.94			169,83			
5 0000	\leftarrow			_	290.14			17001			
0100	\leftarrow	945			390.47			170.34			
0230	\leftarrow	1095			390.8Z			170.69			Œ
0400		1185			391.25			171.12			
0530		1275	i		397.19			172.06			
0700		1365			391.87			171.74			
0815					391.65			71.34			
0915		1500			391.65			71.52			EE SMOUTH & OBOD
10.53	40 26	1600			391,43			171.52			
1235		1700			392.65			171.30			
1415		1800			392.40			172,52			
1715		1980			393.26			72.27			DAN
1935		2120			39333			173.13			+ Q SMOOTH
2225		2300			37405			175.92			EM
013E		23:0			395.2			174,99			Teats 29 3/2 : 29.375
0035		2420			395.30			75,17		29%	105 - 712
0135		2480			374.98			74,71		21/8	JDS @ 8:30 Am
0235		2540		_	394.12		the second s	73.99			
0335		2600			\$94.41			74.28			
0435		2660			394.15			73.97			
05 55		2720			394.44			74.31			
0035		2790			93.51			72.97			
0735		2840			194,23			74.10	-++		
5835	$ \leftarrow$	2900			194.12			73,99			
ञ्१३९	\leftarrow	3000			393,94			73.81			
10		3100			395.05			174.92			
	2053	3200			394.98			74.85			
1455	\leftarrow	3240			-1-1-1			74.28			EM
1-1-	\leftarrow	3330	—— <u> </u> -		1.13.29		/	73.14			
<u>e</u>	\leftarrow	33 90						74,24			
	\leftarrow	3450 3510			14		1	73,99			
		3310			<u> 16 D</u>		1	75.67			PW2

											_	pw-2 (east)
4						UNT	ſ			WEL	<u>les</u>	5a P2
	PARTN				ORKS	PUMPING	TEST	DATA			PING/	BSERVATION_WELL
မျ ၂ TYI	PE of P	UMPING	S TEST						-			
	W Q M	EASURE	ED _				- <u></u>	M.P. for \	N∟'s			elev
HO	W WL's	MEAS										wrt
PUN	MPED \	NELL N	10					% SUBME		: initial		; pumping
RAI	DIUS of	PUMP	ED WE	LL				PUMP ON	: date .	6/14/	<u>00</u> t	ime 08/5
					<u>.</u>					i.e.		me <u>08 /5</u>
		ME			,					WAT		
t =		at t	=0			WATER LEVE WATER LEVEL				PROD		COMMENTS
	ELAP mins hrs	SED TI	ME t	t/t'	READING	CONVERSIONS CORRECTIONS	WATER		HMP	1	Q	(NOTE ANY CHANGES IN OBSERVERS)
5/21				<u> </u>	280.33	TESSA P+1	7		1.0'			BACKLEROUND HZD
5/21	\sim			<u> </u>		TESSA TH1	- /	/	Z.1'			DIMEGRATION IN LO
5/22	×	1240	 	<u> </u>		TESSA PWI	/-		<u> </u>	1		
5/22		1240		· ·	280.46	TH1	- /-	-/		1	t	STOP BACALONO Q
	\sim			1		· •• -		1		1		9:16 5/22 98min=293:41
0816	12	4321	1	4221	293,47			73.34		+		Tomings (Strift
2 - 10			2	<u> · · · - · ·</u>	297.99	······································	<u> </u>	77.86		1		Aax DD=39491-2201
			3		295.01			74,88				= 174.78
	\square	-	4	-	291.63			71,50				
		4325	5	865	288.47			68.34				
	\square		6		285.95	· · · · · · · · · · · · · · · · · · ·		65,82				
			7		283.33			<u>_</u>		1		
			8		281.53					1		
			9	1	279.69					1		
825		4330	10	433	277.86					1		
			12		275.13	· · · · · · · · · · · · · · · · · · ·						· · · · · ·
			14		272 32					1		
			16		270.45							
			18		268,54	· · · · · · · · · · · · · · · · · · ·						
835		4340		217	266.67							
			25		262.89							
845		4350		145	260.09	·····		39.96				Porec=77.1%
		4355			257.28			<u> </u>				0905 WL= 249.25 1 4
855		4360		109	T							Hermit=
0900		4365		-	253,61							
ADE				87,4	251.92							
2915		4380		73	249.21			29.08				83.4% 100
			70									
			80									
			90									
			100			· · · · · · · · · · · · · · · · · · ·						
	\geq											

11.90

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

Department of

1171

ELL	ESSA	PWZ
UMPING	OBSER	VATION WEL
PUMPING	RECOV	ERY DATA
PAGE	0	~

....

PUMPING TEST DATA

. .

	TYPE OF PUMPING TESTSTEP DRAW DOWN TEST
Water Resources	HOW Q MEASURED
	HOW WL'S MEASURED PRESSURE TRANSDUCER
	PUMPED WELL NO
	RADIUS of PUMPED WELL
	DISTANCE from PUMPED WELL

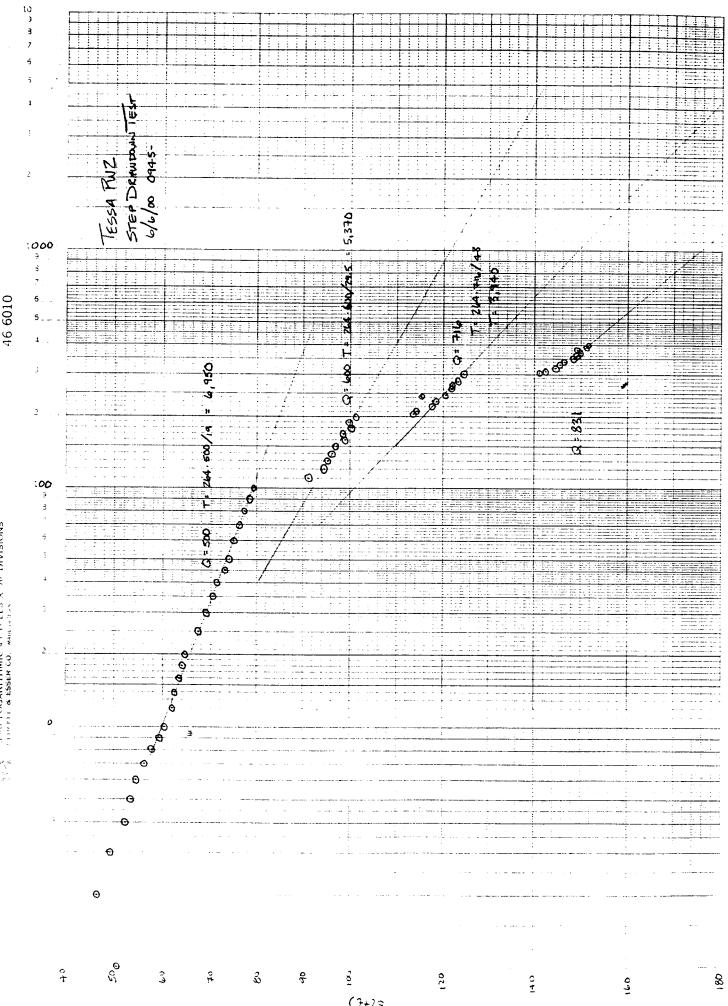
	M.P. for WL's TOP OF PVC I'	STIL VELL elev.
-	DEPTH OF PUMP/AIRLINE	wrt
	% SUBMERGENCE: initial	pumping
	PUMP ON: date/6/00	time94-5
	PUMP OFF: date	time

			-									
	TIME				WATER LEVEL DATA					WATER		
	t = at t'=O				STATIC	STATIC WATER LEVEL				1	DUCT	COMMENTS
	FI	APSED 1		7	<u> </u>	2/8,70			11100001			
CLOCK TIME	mins	1	t'	t /ť	READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	(Sor S'	9/s	հ"	Q	(NOTE ANY CHANGES IN OBSERVERS)
 		1	ļ		269.40	STEP I		50.70		26"	506	
<u> </u>	<	Z	1	ļ	265.34			46.64				DISCHARLE DATY FOR Z MINN
	$ \vdash$	3	<u> </u>	_	267.93			49.23				
	\leftarrow	4			271.02			52.32	1	26-28	1	
	\leftarrow	5	 	┝───	272.53			53.83	L			
	$ \sim$	6		<u> </u>	273.14			54.44	ļ			
	\leftarrow	7	<u> </u>	<u> </u>	274.94			56.24				
	$ \succ$	8	<u> </u>		276.63			57.93		L		
	\vdash				278.11			59.41				
0955	\vdash	10		<u> </u>	278.97			60.27	· · · · · ·	271/2		. I'me save in 10 minutes
}	\leftarrow	12	<u> </u>	╂────	280.62			61.92		ļ		
 	\vdash	14	<u> </u>	<u> </u>	281.06		· · · · · · · · · · · · · · · · · · ·	62.36	ļ	26"		
	<	16			281.85			63.15			ļ	
	\sim	18	ł	<u> </u>	282.71			64.01			ļ	
		20		├───	283.32		<u> </u>	64.62		ļ		15 ml in 25 minures
1015		<u>25</u> 30	 	<u> </u>	286.13			67.43		ļ		
1015				<u> </u>	287.56			68.86	7.3	2614		
		35	<u> </u>		289.12			70.42				
1030	<	40 45			290.05			71.35				
1030	\sim	40 50	┨────		291.84			73.14				
1045		60			292.67			73.97				
1055		70			293.14			74.44		26"		
1105		80			244.72			76.02		26*		
1115		90			296,05			77.35				
1125		100			297.20			78.50	6.4			
1130		105	5		297.99			79.29	6.4			
1135		110	10			STEP IL		90.18		37"	604	
1140		115	15		309.81 312 18			91.11				
1145		120	20					93.48				
1155		130	30	-	313.12			94.42				
1200		135	35		313.58			94.88	·			· · · · · · · · · · · · · · · · · · ·
1205		140						94 99				
1210		140	<u>4</u> 0 45		314,81	·		96.11				
1215		150	4 5 50		315,06			96.36				· · · · · · · · · · · · · · · · · · ·
1220		155	50		316.06			97.36				French Had French
1225		160	60	┝╍╍╌┨	315.34			96.64				BUNE HAS AVCTUATION AFTHIS RPM
1235		170	70		317.54			98.84				
1245		180	80		317.07			98.37				
1255		190	90		318.94			100.30				
1305		200	100		319.58			99.63	1.0			
		2.0				-		100.89	6.0	5z''		
										56	716	
												·
												TESSA PUR STEP
	\geq											TESEA PUZ/

<u>نه چ</u>

WASHOE COUNTY

DEPARTMENT OF WATER RESOURCES


UTILITY SERVICES DIVISION

IELL TESSA PWZ

PUMPING OBSERVATION WELL PUMPINGY RECOVERY DATA PAGE _____ OF ____

	TYPE OF PUMPING TEST	
Water Resources	HOW Q MEASURED	M.P. for WL's elev.
	HOW WL'S MEASURED	
	PUMPED WELL NO.	SUBMERGENCE: initial pumping
	RADIUS of PUMPED WELL	PUMP ON: date time
	DISTANCE from PUMPED WELL	PUMP OFF: date time

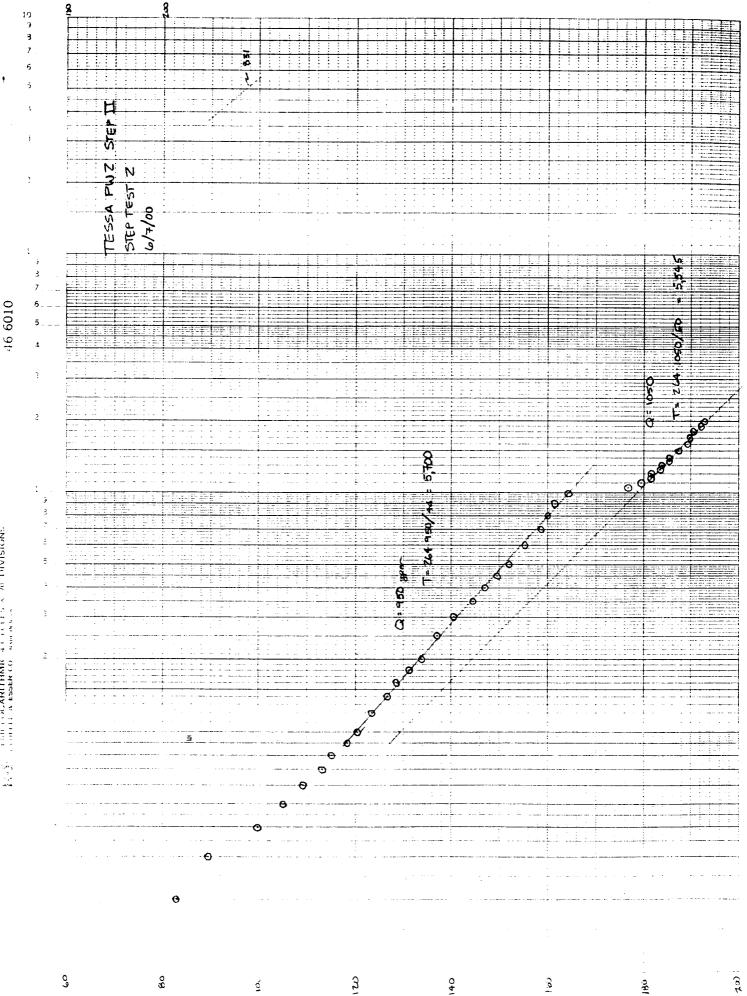
		TIME		<u> </u>		WATER L	EVEL D	10/0	WATER			
						STATIC WATER LEVEL 218.70						COMMENTS
CLOCK	EL mins hrs	APSED T	IME t'	t /ť	READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	Sor S'	Q/5	h"	Q	(NOTE ANY CHANGES IN OBSERVERS)
1310	\leftarrow	205	<u>+</u>	ļ	332.43	STEP UL		113.73		52	716	
1315	\leftarrow	210	10	<u> </u>	333.08			114.38				ENLINE PROBLEMS .R
1325	\vdash	220	20		336.42			117.72				SHAFT IMOMAKE. EVENE
1735	$ \leftarrow$	230	30	ļ	337.35			118.65				IS LADOR WIL OFTEN. FLOW
1345	\vdash	240	40	ļ	333.76			115 06				HAND TO KEEP STABLE
1307	$ \leftarrow$	242	42		336.31			117:61				
1350		245	45		331.25			120.55				
1355		250	50		339.11			120.41				
1405	$ \leftarrow$	260	60		340.6Z			121.92	5.9			
1415		270	70		340.69			121.99				
1425		280	80		342.34			123.64				
1435		290	90									
1445		300	100		343.52			124.82	5.7	70"	831	
1450	\leq	305	5		359.73	STEPT		141.03				
1455	\leq	310	10		361,10			142.40	5,8			
1505		320	20		363.11			144.41		1		
1515		330	30		364.04			145.34	5.7			
1525		340	40		365.47			146.77				
1535		350	50		367.30			148.60				
1545		360	60		367.73			149.03	····			
		370	70		368.66			149.96				
		380	80		367.52			148.8Z				
		390	90		370.06			151.36				
		400	100		370.63			151.93	5.5			
	\langle		_									
						·····						
			1									
	\square											
												· · · · · · · · · · · · · · · · · · ·
									·····			
		Ì										
										+	+	
L			L	1								

DEPARTMENT OF WATER RESOURCES

UTILITY SERVICES DIVISION

Department of

è è.


Water Resour

UTIL-16

WELL TESSA PWZ STEP TEST Z RUMPINGY OBSERVATION WELL PUMPING / RECOVERY DATA PAGE 1 OF 1

TYPE OF PUMPING TEST _ SEEP TEST Z	
HOW Q MEASURED 8×6" OKIFICE	M.P. for WL's TOP or PVC elev
HOW WL'S MEASURED PRESSURE TRANSPUCER	M.P. for WL's <u>TOP or PVC</u> elev DEPTH OF PUMP/AIRLINE <u>~ 430-440</u> wrt
PUMPED WELL NO. PWZ	SUBMERGENCE: initial pumping
RADIUS of PUMPED WELL	PUMP ON: date $6/7/00$ time 0915
DISTANCE from PUMPED WELL	PUMP OFF: date $\frac{6/4}{00}$ time 1235

		TIME		····	WATER LEVEL DATA							
	t =	a	t ť=C)	STATIC WATER LEVEL Z19.67					WATER PRODUCT		COMMENTS
CLOCK TIME	EL mins hrs	APSED	time t'	t /ť	READING		WATER LEVEL	(S) or S'	Q/s	h"	Q	(NOTE ANY CHANGES IN OBSERVERS)
0916	$ \leftarrow$	<u>_'</u> _		ļ	276.51	STEP I		56.84		36	950	THZ 221.98
	\leftarrow	2		ļ	302.94			83.27	1			
		3	<u> </u>		309.48			89.81		1		ADJUST ENGINE RAM
	$ \leftarrow$	4	ļ	L	319.72			100.05	1			
		5			324.96			105.29		361/2		
 		6			328.98			109.31				
ļ		7	ļ	L	333.25			113.58		1		
		8			334.94			115.27				
		9			337.88			118.21	<u> </u>			
0925		10			340.00			120.33				
		12			342.94			123.27		<u> </u>		
		14			346.28		···	126.61				
0931		16			348.25			128.58	<u> </u>	36+		
		18			351.02			131.35				
0935		20			353.56			133.89	7.1			
0940		25			356.58			136.91		<u>├</u>		
0945		30			360.09			140.42				
0950		35			364.39			144.72				
0955		40			366.73			147.06				ADJUST ENGINE Q 11
1000		45			369.45			149.78				
1005		50			371.82			152 15	6.2	361/2		
1015		60			375.19			155.52	6.1	3072		
1025		70			378.45			158.78	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			
1035		80			379.70			160.03	5.9			
1045		90			381.31			161.64				
1055		100			383.89			164.22	5.8			
1100	\square	105	5		396.43	STEP IL		176.76		44"	10.51	
1105	\sim	110	10		399.44			179.77	5.8	44	1050	
1110	\geq	115	15		401.41			181.74	5.8			
1115	\geq	120	20		401.30			181.63				
1120	\geq	125	25		403.20			183.53				
1125	\sim	130	30		403.49			183.82	5.7			
1130	\geq	135	35		404.99			185.32	<u>J. T</u>			FLOW STABLE
1135		140	40		405.31			185.64		ł-		
1145	\geq	150	50		407.10			187.43		44"	<u> </u>	
1155	\geq	160	60		409.15			189.48		<u>+</u> +		
1205		170	70		409.54			189.87	5.5			
1215		180	80	1	410.36			190.69	<u> </u>			
1225	\geq	190	90		411.83			192.16	5.5			
1235	\geq	200	100		412.30		+	192.63	<u></u>			
	\geq							172.02		+		
	\sim						·+	+		+		
K	1				1	l.	l]

PW-2 (east) VELL TESSA TH2 PUMPING OBSERVATION WELL -TH2 PUMPING ARECOVERY DATA

PAGE _____ OF ___

DEPARTMENT OF WATER RESOURCES UTILITY SERVICES DIVISION

•/	DELIAIT	****
	UTILITY	SE
t of		

Dena

UTIL-16

10

Water Resources

TYPE OF PUMPING TEST _ Constant Q Test 3		
HOW Q MEASURED	M.P. for WL's	elev.
HOW WL'S MEASURED	DEPTH OF PUMP/AIRLINE	
PUMPED WELL NO	_ % SUBMERGENCE: initial	
RADIUS of PUMPED WELL	_ PUMP ON: date	
DISTANCE from PUMPED WELL	_ PUMP OFF: date	

TIME					WATER LEVEL DATA STATIC WATER LEVEL 222,63					TER		
t = at t'=O				STATIC	222.6	PRO	DUCT	COMMENTS				
CLOCK TIME	mins hrs	APSED TIN	ME t'	t /ť	READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	Sor S'		Q	(NOTE ANY CHANGES IN OBSERVERS)	
0816					224,68			2.05		29"		
0817		2			226,53			3,90				
0818		3			228.09			5,46				
0819	\leq	4			229.62			6.99				
0820		5			231,03			8,40				
0821		6			232.16			9,53				
22		7			233,45			10.82				
23	\leq	8			234.34			11.71				
24	\leq	9			235.28			12,65			······································	
0825		10			236.27			13,64				
0827		12			237.85			15.17				
0829		14			239,54			16.77				
0831	\leq	16			240.69			18.06				
0833	\leq	18			241,89			19.26				
0835	\leq	20			243.15			20.52				
0840	\leq	25			245.66			23.03				
0845	\sim	30			247.63		-	25,00				
	\leq	35			249.73			27,10				
0855	\langle	40			251.09			28.46				
	\langle	45			252.41			29.78				
0905	\leq	50			253.75			31.12				
0915	21	60			255,70		1	33.07				
0925	\sim	70			257.78			35.15				
0935	\leq	80			259.04			36.41				
0945	\leq	90			260.37			37.74				
0955	\leq	100			261.62		1	38,99				
1030	\leq	135			264.87			42.24				
1100	\leq	65			267.08			44.45				
1130	\leq	195			268.40			45.77				
1200	\leq	225			269.71			47.08				
1230	\square	255			270.65			48.0Z			······································	
1300	\leq	285			271.60			48.97				
1330		315		·	272.42			49.79				
1400		345			272.92			50.29			·	
1430	\leq	375			273.48			50.85				
1500		405			273.98			51.35				
1530	\square	435			274,36			51.73				
1600		465			274.71			52.08				
1630		495			275.03			52.40			<u></u>	
1700	\square	525		ľ	275.29			52.66			· · · · · · · · · · · · · · · · · · ·	
1745		570			275.88			53.25				
1800		585			276.13			53.50				
1315	-10	600			276.29			53.66				
17		1015			276 47			53.86				
10		645			10 61			54.23			THZ	

DEPARTMENT OF WATER RESOURCES

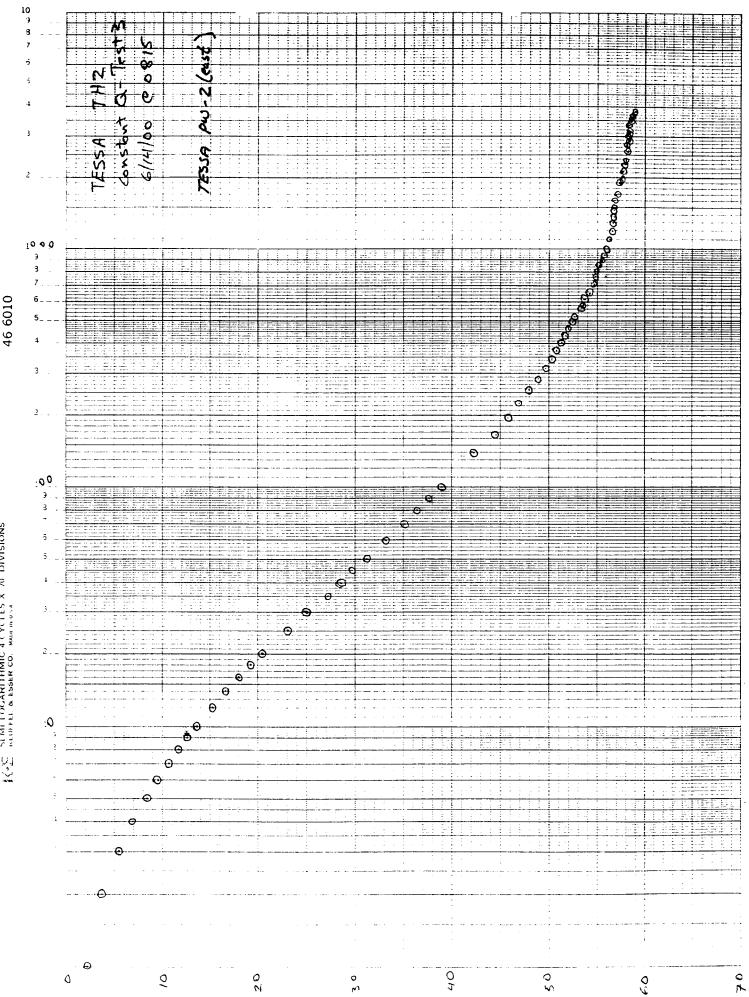
UTILITY SERVICES DIVISION

PUMPING TEST DATA

	PUMPING / OBSERVATION WELL	
	PUMPING/ RECOVERY DATA	
	PAGE OF	
TA		

VELL THZ

Pw.2 (east)


Department of
A 40
Water Resources
WARD ACSOURCES

TYPE OF PUMPING TEST CONSTANT Q TEST 3	
HOW Q MEASURED	M.P. for WL's
HOW WL'S MEASURED	
PUMPED WELL NO	% SUBMERGENCE: initial
RADIUS of PUMPED WELL	PUMP ON: date 6/14/00

DISTANCE from PUMPED WELL

M.P. for WL's	elev
DEPTH OF PUMP/AIRLINE	wrt
% SUBMERGENCE: initial	pumping
PUMP ON: date6/14/00	
PUMP OFF: date	

			TIME				WATER LI		ΔΤΛ			
	1	t =		ť=C)	STATIC WATER LEVEL ZZZ.63					TER DUCT	COMMENTS
	CLOCK TIME	EL.	APSED T	IME t'	t /ť	READING	CONVERSIONS or CORRECTIONS	WATER LEVEL	Sor S'		Q	(NOTE ANY CHANGES IN OBSERVERS)
	1930		475			274.78			54.15			
	2000		705			277.05			54.42			
	2030		735			271.35			54.72			
	2100		745			277.49		_	54.84			······································
	2130	\leq	795			277.61			54.98			
	2200		825			277.79			55.16			
	2250		855			277.91			55.28			
	2300		885			278.04			55.41			
	2330		915			278.20			55,57			
15	0000		945			278.30			.55,67			
	0100		1005			278.57			55.94			EE
	0230		1095			278.88			56.25			
	0400		1185			279.13			56.50			
	0530		1275			279.17			56.54		1	
	1700		1365			279.34			56.71			
	0015 2915	$\langle \rangle$	1440			279.33			56.70			
			1500			279.43			56.80			
	1055		1600			279.50			56.87			
	1235		1700			279.72			57.09			
	1415		1800			000.00						· · · · · · · · · · · · · · · · · · ·
	1555		1900			279.93			57.30			
	17.00	\leq	1930			0.00						
	<u>1715</u> 1939		2120			280.05			57.42			DAN
	2235		2300			280.23	·		57.62			EM
	2325		2340			280.59			57.80			
	0035		2420			280.77			57.96			
	0135		2480			280.92			58,14			
	0235		2540			280,76			58.29			
	0335		2600			280,79			and the second se			
	0435		26:00			280,73			58.16			
	05:5		2720			280,73			58.10			
ł	2635		2780			280.72			58.09	-+		
Ì	0.35	> 1	2840			280.70			58.07			
	2235		2900			280.85			58,22			
			3000	i		280.86			58.23	-+		
i			3100			280.96			58,33	<u> </u>		
I	1335		3200			281.08			58.45	<u> </u>		
[+;<		3240			280.89			58,53		+	EM
[K-45	\sim	3330			280.82			58.19			
[115		3390			280, 39			58.53			
	22		3453			280 93			58.30			
	1235		3:12			25.1.22			58 59			
	1915	\square	3550			290.75			58.32			
5	215	\square	2412			28,21			58.43			THZ
	2		2,22		ź	25,35			58.75		I	
~			3750		÷				52.75			

NOISIVICI

APPENDIX C-Water Quality Reports

WATER QUALITY RESULTS FOR PW-1 (west)

-

.

VERIPLICATE CLEASE PRINT VERTER CH Aun: Fees may	PH 2:53 IEMISTR		Univer:	sity of Nevad Reno, N	EALTH LAB a School of M levada 89557) 688-1335	edicine/385 All of the inf	TESS Formation b	14613 A PW- elow must be form not be perform	/ (west)
Circle the co	for ROUTINE	E DOMESTIC AN eded for PARTIA	NALYSIS. L ANALYSIS.		Township General L		. Range H. Rose	Highurn	tion 35
AMPLING INSTRUCTIONS:The sample submitted must be representative of the source. Spring and surface water samples should be as free of dirt and debris as possible. Wells shouldface water samples should be as free of dirt and debris as possible. Wells shouldthe pumped thoroughly before sampling, changing the water in the casing at ast three times. Product water from filters should be sampled after runningfor about ten (10) minutes.Sampled byJohn Hulettwner Washoe Countywher Washoe CountyPhoneMddressP.O. Box 11130CityStateNevada				REASON Loan Persons Purchas Rental Subdivi	Source Address Test Cell Test REASON FOR ANALYSIS: USE OF WATER: Loan Domestic drinking water Personal health reasons Geothermal Purchase of the property Industrial or mining Rental or sale of property Irrigation Subdivision approval Other			TER: rinking water	
EPORT TO: Name Te Address	rri Sve .O. Box no evada	tich (Wa 11130 Zi	shoe Co ,,89520-1	unty) 0027	Filter Public Spring Well Hot IN USE:	Yes Q No		Name Surface Casing diameter Casing depth	in. f
		The results belo FO		ORY USE ON		e submitted to	this labora	-	ER DESIRED
Donsaitorat 4	182 ppmO	Gonstituent29		6Constituen		Constitute 3	1 S.U.		ENTS BELOW
180° C.	166	Chloride	1	Iron	0.02	Color	3	Cd	(0.001
Hardness	88	Nitrate_N	0.7	Manganese	0.00	Turbitity	0.9	C_r	
Calcium	17	Alkalinity	112	Copper	0.01		7.55	Ha	0.00
fagnesium	11	Bicarbonate	137	Zinc		ic is a second sec	230	Se	K0.001
odium	9	Carbonate	0	Barium		51020C -(Sh	LO MOI
Potassium	4	Fluoride O	.07 E	oron	0.0			Be	<0.001
ulfate	3	Arsenic < 0 .		ilica	62			Ni	K0.001
MBAS	<0.1	CN-	-0,005		<0.01	y ross of	23	TL	K0.001
monia	<0,1			Pb	0.001	a ross B	4 phi/	Li	20,2
ee			Remarks		·····	<u></u>	Alex for 2.		M6-27-00
21WS I.D 21WS I.D 21WA Pri	Si	ec		2.6/2/07 M)	<u> </u>	M.	RESULTS	REPORTED
		3rd		LITIN	m ado	<u>1961</u>	1 JON		0 2000
)ate Rec'd n = par <u>ts p</u> er mill		Init per liter: S.U. = Sta	andard Units	Y LOSTEL	5344777	5, VI S			(Rev. 6/99

··· ·· ·--

Alpha Analytical, Inc. 255 Glendale Ave. • Suite 21 • Sparks, Nevada 89434 5778 (775) 355-1044 • (775) 355-0406 FAN • 1-806-283-4483

> WASHOE COUNTY DEPT. OF WATER RESOURCES

JUN 1920

TESSA PW.1 (west)

RECEIVED

CASE NARRATIVE June 14, 2000

One sample was received on 05/25/00 for the analysis of SOC compounds for source compliance monitoring in the state of Nevada. Sample containers were received in good condition.

Alpha Analytical ID	Client ID	Date T	ime Collected
WCW00052524-01	Tessa Well	05/25/00	11:00

METHOD 504.1:

Your sample was spiked as the batch Laboratory Fortified Matrix (LFM). All QC criteria were met with no abnormalities.

METHOD 505:

Your sample was spiked as the batch LFM. All QC criteria were met with no abnormalities.

METHOD 515.1:

Your sample was spiked as the batch LFM. All QC criteria were met with no abnormalities.

METHOD 525.2:

All QC criteria were met with no abnormalities.

METHOD 531.1:

Your sample was spiked as the batch LFM. All QC criteria were met with no abnormalities.

METHOD 547:

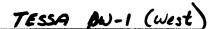
All QC criteria were met with no abnormalities.

METHOD 548.1:

Your sample was spiked as the batch LFM. All QC criteria were met with no abnormalities.

METHOD 549.2:

Your sample was spiked as the batch LFM. All QC criteria were met with no abnormalities.


Walter J. Hinchman Quality Assurance Officer

Date

Cas Verlag, N. • (762) (1988) [Control of the state of the control of the state of W1 (Carl R8 • CM 98 (722-5860)) (9) (Control of the state of the state).

255 Gendule Ave. • Sene 21 • Sparks, Nevada 894345778 (775) 3554944 • 7775/355940647XX • 1-80628341483

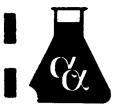
ANALYTICAL REPORT

Client: Washoe County Water Resources	Lab Sample ID: 00052524-01A		
4930 Energy Way	Date Sampled: 5/25/00		
Reno, NV, 89502	Date Received: 5/25/00		
Attn: Terri Svetich	Matrix: Aqueous		
Client Sample ID: Tessa Well	PWS/DWR#:		

National Primary Drinking Water Phase II and Phase V - Regulated and Unregulated Synthetic Organic Compounds (SOCs)

Analyte		Result	R.L.	Units	Date Analyzed	Analyte	Result	R.L.	Units	Date Analyzed
E504.1	EDB AND DBCP					E525.2 SVOCS BY GCMS				
1,2-Dibror	noethane	ND	0.010	µg/L	5/31/00	Propachlor	ND	1.0	μg/L	6/5/00
1,2-Dibror	no-3-chloropropane	ND	0.020	μg/L	5/31/00	Simazine	ND	0.070	μg/L	6/5/00
E505	ORGANOHALIDE I	PESTICID	ES ANI) PCES	. .	Atrazine.	ND	0.10	µg/L	6/5/00
Hexachlor	ocyclopentadiene	ND	0.10	μg/L	5/26/00	Metribuzin	ND	1.0	μg/L	6/5/00
Hexachlor	obenzene	ND	0.10		5/26/00	Alachlor	ND	0.20	µg/L	6/5/00
gamma-BH	łC	ND	0.020		5/26/00	Metolachlor	ND	1.0	μg/L	6/5/00
Alachlor		ND	0.20	μg/L	5/26/00	Butachlor	ND	1.0	μg/L	6/5/00
Heptachlor	r	ND	0.040	. 🗕	5/26/00	bis(2-Ethylhexyl)adipate	ND	0.60	µg/L	6/5/00
Aldrin		ND	0.20	μg/L	5/26/00	bis(2-Ethylhexyl)phthalate	ND	0.60	μg/L	6/5/00
Heptachlor	r epoxide	ND	0.020	μg/L	5/26/00	Benzo(a)pyrene	ND	0.020	µg/L	6/5/00
Dieldrin		ND	0.20	μg/L	5/26/00	E531.1 CARBAMATES				
Endrin		ND	0.010		5/26/00	Aldicarb sulfoxide	ND	0.50	μg/L	6/1/00
Methoxycl	hlor	ND	0.10	μg/L	5/26/00	Aldicarb sulfone	ND	0.80	μg/L	6/1/00
Chlordane		ND	0.20	μg/L	5/26/00	Oxamyl	ND	2.0	μg/L	6/1/00
Toxaphene		ND	1.0	μg/L	5/26/00	Methomyl	ND	1.0	μg/L	6/1/00
Aroclor 10	16	ND	0.080	μg/L	5/26/00	3-Hydroxycarbofuran	ND	1.0	μg/L	6/1/00
Aroclor 12	21	ND	20	μg/L	5/26/00	Aldicarb	ND	0.50	μg/L	6/1/00
Aroclor 12	32	ND	0.50	μg/L	5/26/00	Carbofuran	ND	0.90	μg/L	6/1/00
Aroclor 12	42	ND	0.30	μg/L	5/26/00	Carbaryl	ND	1.0	μg/L	6/1/00
Aroclor 12	48	ND	0.10	μg/L	5/26/00	E547 GLYPHOSATE				
Aroclor 12	54	ND	0.10	μg/L	\$/26/00	Glyphosate	ND	6.0	μg/L	5/30/00
Aroclor 12	60	ND	0.20	μg/L	5/26/00		ND	0.0	μ <u>5</u> /L	5/ 50/ 00
E515.1	CHLORINATED AC	ID HERB	CIDES			E548.1 ENDOTHALL				
Dalapon		ND	1.0	μg/L	6/3/00	Endothall	ND	9.0	μg/L	5/31/00
Dicamba		ND	0.50	μg/L	6/3/00	E549.2 DIQUAT/PARAQUA	ΛT			
2,4-D		ND	0.10	μg/L	6/3/00	Diquat	ND	0.40	ug/L	5/30/00
PCP		ND	0.040		6/3/00					
2.4.5-TP		ND	0.20	μg/L	6/3/00					
Dinoseb		ND	0.20	μg/L	6/3/00					
Pichloram		ND			6/3/00					
riemoram		שא	0.10	μg/L	0/3/00					

ND = Not Detected


Approved By:

Horehman Jalter a

Walter Hinchman Quality Assurance Officer Date:

6/14/00

1187 [1877] • 7 1 [198-0.2] Salamente, CA • 116 [162-089] [Webbal K8 • [236-7225890] noware and a set

Alpha Analytical, Inc. 275 Glendale Act • Source 21 • Sparks, Nevada 894315778 1755 3554044 • 1755 35560064AX • 188062834183

TESSA PW-1 (West

ANALYTICAL REPORT

Washoe County Water Resources 4930 Energy Way Reno, NV 89502 Job#: Phone: (775) 954-4641 Attn: Terri Svetich

Alpha Analytical Number: WCW00052524-01A Client I.D. Number: Tessa Well

Sampled: 05/25/00 Received: 05/25/00 Analyzed: 05/25/00

SDWA Volatiles (plus Lists 1 & 3 Unregulated) EPA Method 524.2

		Concentration	Reporting
	Compound	µg/L	Limit
1	Benzene	ND	0.500 µg/L
2	Vinyl chloride	ND	0.500 µg/L
3	Carbon tetrachloride	ND	0.500 ug/l
4	1,2-Dichloroethane	ND	0.500 µg/L
5	Trichloroethene	' ND	0.500 µg/L
6	1,4-Dichlorobenzene	ND	0.500 µg/L
7	1,1-Dichloroethene	ND	0.500 µg/L
8	1,1.1-Trichloroethane	ND	0.500 µg/L
9	cis-1.2-Dichloroethene	ND	0.500 µg/L
10	1,2-Dichloropropane	ND	0.500 µg/L
11	Ethylbenzene	ND	0.500
12	Chlorobenzene	ND	0.500 µg/L
13	1,2-Dichlorobenzene	ND	0.500 µg/L
14	Styrene	ND	0.500 µg/L
15	Tetrachioroethene	ND	0.500 µg/L
16	Toluene	ND	0.500 µg/L
17	trans-1,2-Dichloroethene	ND	0.500 µg/L
18	Xylenes, total	ND	0.500
19	Dichloromethane	ND	0.500 µg/L
20	1,1,2-Trichloroethane	ND	0.500 µg/L
21	1,2,4-Trichlorobenzene	ND	0.500 µg/L
22	Bromobenzene	ND	0.500 µg/L
23	Bromodichloromethane	ND	0.500 µg/L
24	Bromoform	ND	0.500 µg/L
25	Bromomethane	ND a	0.500 µg/L
26	Dibromochloromethane	ND .	0.500 µg/L
27	Chloroethane	ND	0.500 µg/L
28	Chloroform	ND	0.500 µg/L
29	Chloromethane	ND	0.500 µg/L
30	2-Chiorotoluene	ND	0.500 µg/L
31	4-Chlorotoluene	ND	0.500 µg/L
32	Dibromomethane	ND	0.500 µg/L
33	1,3-Dichlorobenzene	ND	0.500 µg/L
34	1.1-Dichloroethane	ND	0.500 µg/L
35	1.1-Dichloropropene	ND	0.500 µg/L
36	1.3-Dichloropropane	ND	0.500 µg/L
37	cis-1.3-Dichloropropene	ND	0.500 µg/L

		Concentration	Reportir	ng
	Compound	µg/L	Limit	
38	trans-1,3-Dichloropropene	ND	0.500	µg/L
39	2,2-Dichloropropane	ND	0.500	µg/L
40	1,1,1,2-Tetrachloroethane	; ND	0.500	µg/L
41	1,1,2,2-Tetrachloroethane	ND	0.500	µg/L
42	1,2,3-Trichloropropane	ND	0.500	µg/L
43	Bromochloromethane	ND	0.500	µg/L
44	n-Butylbenzene	ND	0.500	µg/L
45	Dichlorodifluoromethane	ND	0.500	µg/L
46	Trichlorofluoromethane	ND	0.500	µg/L
47	Hexachlorobutadiene	ND	0.500	µg/L
48	Isopropylbenzene	ND	0.500	µg/L
49	4-isopropyltoluene	ND	0.500	µg/L
50	Naphthalene	ND	0.500	µg/L
51	n-Propylbenzene	ND	. 0.500	µg/L
52	sec-Butylbenzene	ND	0.500	µg/L
53	tert-Butylbenzene	ND	0.500	µg/L
54	1,2,3-Trichlorobenzene	: ND	0.500	µg/L
55	1,2,4-Trimethylbenzene	ND	0.500	µg/L
56	1,3,5-Trimethylbenzene	ND	0.500	µg/L
57	Methyl tert-butyl ether (MTBE)	ND	0.500	µg/L

pH = 2

ND = Not Detected

Phase I Regulated Compounds (1-8); Phase II Regulated Compounds (9-18); Phase V Regulated Compounds (19-21); List 1 Unregulated Compounds (22-41); List 3 Unregulated Compounds (42-56); and, Additionally requested Compounds (57+)

Approved By: 0

Date:

6/7/00

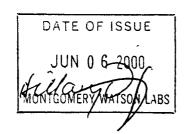
Roger L. Scholl, Ph.D. Laboratory Director

Euslis I, S.N. • Tozlis Schulz / Sichlau aus Cole (1996) (Internet) - Wichita KS • (1997) Tzz-5896 - Cole and Cole (1997) (Internet) - Cole (1997)

TESSA PW-1 (West) RECEIVED JUN 12 2000

MONTGOMERY WATSON LABORATORIES

a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadena, California 91101 Te1: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227) WASHOE COUNTY DEPT. OF WATER RESOURCES


Laboratory Report

for

Washoe County Dept. of Water Resources 4930 Energy Way

Reno, NV 89502-4106

Attention: John Hulett Fax: (775) 954-4610

HDS Hillary Strayer

Report#: 66400 DRINKING

	· · · · · · · · · · · · · · · · · · ·	-6400/FAX: 626-568-6324 7 T OF SAMPLES RECEIVED	ESSA AN-I (West
Washoe County 4930 Energy Wa Reno, NV 89502 Attn: John Hul	2-4106	urces ustomer Code: WASHOE PO#: 179701 Group#: 66400 Project#: DRINKING Proj Mgr: Hillary Straye Phone: (626) 568-6412	
	the tests listed be	side each sample. If this service representative. The service representative is the service repr	ney have been information nank you for
is incorrect,	ery Watson Laborator	ies.	
is incorrect,	ery Watson Laborator	Matrix	Sample Date
is incorrect, using Montgome	ery Watson Laborator e Id Tests Sched	Matrix	-
is incorrect, using Montgome mple# Sample	ery Watson Laborator e Id Tests Sched WELL @RN	Matrix uled	Date
is incorrect, using Montgome mple# Sample	ery Watson Laborator e Id Tests Sched WELL @RN	Matrix uled Water	Date
is incorrect, using Montgome mple# Sample	ery Watson Laborator e Id Tests Sched WELL @RN Test Acr	Matrix uled Water	Date
is incorrect, using Montgome mple# Sample 05260055 TESSA Test Acronym	ery Watson Laborator e Id WELL @RN Test Acr Description	Matrix uled Water	Date
is incorrect, using Montgome mple# Sample 05260055 TESSA Test Acronym	ery Watson Laborator e Id WELL @RN Test Acr Description	Matrix uled Water	Date

- .

(

MONTGOMERY WATSON LABORATORIES a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadene, California 91101 Te1: 828 568 6400 Fax: 828 588 8324 1 800 566 LABS (1 800 566 5227) TESSA PW-1 (west) Laboratory Report #66400

Washoe County Dept. of Water Samples Received Resources John Hulett 26-may-2000 09:30:00 4930 Energy Way Reno , NV 89502-4106

repared Analyzed QC Batch# Method Analyte Result Units MRL Dilution "ESSA WELL (2005260055) Sampled on 05/25/00 Radon 222 05/26/00 116939 (SM7500RN) Radon 222 890 pCi/1 50 1 05/26/00 116939 (SM7500RN) Radon 222, Two Sigma Error 27 pCi/l 0.0000 1

1

(TESSA PW-1 (west)

Laboratory QC Summary Report #66400

Washoe County Dept. of Water Resources

QC Batch #116939 - Radon 222

2005260055

TESSA WELL

Analysis Date: 05/26/2000

TESSA PW-1 (west) 1

1 800 566 LABS (1 800 566 5227)

Laboratory QC Report #66400

Washoe County Dept. of Water Resources

QC Batch #116939

Radon 222

õc	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
LCS1	Radon 222	1000	948 9	4.8	(80.00 - 120.00)	KFD (4)
LCS2	Radon 222	1000	908 9	0.8	(80.00 - 120.00)	4.3
MBLK	Radon 222	ND				4.5

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and DUP are advisory only and not applicable for ICR monitoring.

WATER QUALITY RESULTS FOR PW-2 (east)

NEVADA STATE HEALTH LABORATORY University of Nevada School of Medicine/385 Reno, Nevada 89557

TESSA PW-2 (cast) 146299

Invinen -				(775)	000-1335				
		Y ANALYSI types of samples.		10 (1111 - 1	<u></u> 93			elow must be f ot be perform	
Check her Circle the	e for ROUTINE	DOMESTIC AN	ALYSIS.		General L	evada 	Ci Range 	ounty Wash	0e tion <u>3</u> :5
The sample sul face water samp be pumped tho least three time for about ten (1	oles should be as roughly before s s. Product water 0) minutes. 0hn Hule	ONS: representative of free of dirt and det sampling, changin from filters shou tt y h 130	bris as possibling the water i ald be sampled ate	e. Wells should n the casing at d after running 9 - 00	Source Ad REASON Loan Person: Purcha: Rental Subdivi	Idress	2550 Pump NSIS: s ty ny	USE OF WA Domestic dr Geothermal Industrial or Irrigation	IER: inking water
REPORT TO Name	erri Svet P.O. Box eno Nevada	zich (Wa: 11130 Zi	shoe Co	unty) 0027	Filter Public Sa Spring WeilX Hot IN USE:		ñ. Id	Surface Casing diameter Casing depth	Pw ≠ 2 rin. .ft.
	1	he results belo	w are repre	sentative only	y of the sample	e submitted t	o this labora	tory.	•
		FOI	R LABORAT	ORY USE ON	ILY				ER DESIRED ENTS BELOW
Conscience 113 T.D.S. @ 180° C.	206 ppm0	Constituent 8.	2 ppm.	2Constituent	0 312 >9=0		99 s .u.	Constituent	ppm
Hardness	173	Chloride Nitrate_N	2	Iron Manganese	0.03	Color	3	Ed Gr	K0.001
Calcium	19	A 11-11-11-	0.6	Copper	0.00	Turbitity pH	0.3	C/ Hy.	<0.0005
Magnesium	14	D:	151	Zinc		EC	250	Se	KODOL
Sodium	10	Carbonate	0	Barium	0.08	5I@20C -	-0.35	Sb	K0.001
Potassium	5	Fluoride O	.04 E	oron	0.0			Be	K0.001
Sulfate	4	Arsenic 0.0	003 3	ilica	60			Ni	K0.001
<u>CN-</u> MBAS	KO.CC5 KO.I	AC2	KC.01 K0.1	Li Pb		g. 155 ×	5plill 5plill	TI «	10.0005
Fee		HIMMONIA	Remarks		\$0.00]		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ЪЯ	N 7-14-07
Collected by						U	81/1	1/1	r

opm = parts per million, milligrams per liter; S.U. = Standard Units

PWS I.D.

SDWA --- Pri. Sec.

st 2nd 3rd

Date Rec'd Init.

....

pws FD

.....

.....

 $\overline{\mathbf{v}}$

JUL 1 8 2000

.....

RESULTS REPORTED

.....

~____

This is a New Well - No

.....

20/00

26

CASE NARRATIVE July 3, 2000

One sample was received on 06/09/00 for the analysis of SOC compounds for source compliance monitoring in the state of Nevada. Sample containers were received in good condition.

Alpha Analytical ID	Client ID	Date	Time	Collected
WCW00060947-01	Tessa Well #2 East	06/09/00) 10:	00

METHOD 504.1:

Your sample was spiked as the batch Laboratory Fortified Matrix (LFM). All QC criteria were met with no abnormalities.

METHOD 505:

Your sample was spiked as the batch LFM. All QC criteria were met with no abnormalities.

METHOD 515.1:

Your sample was spiked as the batch LFM. All QC criteria were met with no abnormalities.

METHOD 525.2:

Your sample was extracted with batch #3828. All QC criteria were met with no abnormalities except for the recovery of metribuzin a non-regulated compound. Metribuzin had a recovery in the Laboratory Fortified Blank (LFB) and LFBdup of 43% and 43% respectively with a window of acceptability of 70% to 130%. The recovery of metribuzin in the batch LFM was 35%. Metribuzin may be suspect.

METHOD 531.1:

All QC criteria were met with no abnormalities.

METHOD 547:

All QC criteria were met with no abnormalities.

METHOD 548.1:

All QC criteria were met with no abnormalities.

METHOD 549.2:

Your sample was spiked as the batch LFM. The recovery of diquat was 62% with a window of acceptability of 70% to 130%. The Laboratory Fortified Blank (LFB) and LFBdup had recoveries of 80% and 84% respectively. The recovery of diquat in your sample may be suspect due to matrix effects. All other QC criteria were met with no abnormalities.

Walter J. Hinchman Quality Assurance Officer

Date

TESSA PW.2 (Cast)

Reporting

ANALYTICAL REPORT

Washoe County Water Resources 4930 Energy Way Reno, NV 89502

Job#: Phone: (775) 954-4641 Attn: Terri Svetich

Alpha Analytical Number: WCW00060947-01A Client I.D. Number: Tessa Well #2 (East) Sampled: 06/09/00

Received: 06/09/00 Analyzed: 06/13/00

SDWA Volatiles (plus Lists 1 & 3 Unregulated) EPA Method 524.2

		Concentration	Reporting
	Compound	µg/L	Limit
1	Benzene	ND	0.500 µg/L
2	Vinyi chloride	ND	0.500 µg/L
3	Carbon tetrachloride	ND	0.500 µg/L
4	1.2-Dichloroethane	ND	0.500 µg/L
5	Trichloroethene	ND	0.500 µg/L
6	1.4-Dichlorobenzene	ND	0.500 µg/L
7	1,1-Dichloroethene	ND	0.500 µg/L
8	1,1,1-Trichloroethane	ND	0.500 µg/L
9	cis-1,2-Dichloroethene	ND	0.500 µg/L
10	1,2-Dichloropropane	ND	0.500 µg/L
11	Ethylbenzene	ND	0.500 µg/L
12	Chlorobenzene	ND	0.500 µg/L
13	1,2-Dichlorobenzene	ND	0.500 µg/L
14	Styrene	ND ·	0.500 µg/L
15	Tetrachloroethene	ND	0.500 µg/L
16	Toluene	ND .	0.500 µg/L
17	trans-1,2-Dichloroethene	ND	0.500 µg/L
18	Xylenes, total	ND	0.500 µg/L
19	Dichloromethane	, ND	0.500 µg/L
20	1,1,2-Trichloroethane	ND	0.500 µg/L
21	1,2,4-Trichlorobenzene	ND	0.500 µg/L
22	Bromobenzene	ND	0.500 µg/L
23	Bromodichloromethane	ND •	0.500 µg/L
24	Bromoform	ND	0.500 µg/L
25	Bromomethane	ND	0.500 µg/L
26	Dibromochloromethane	ND .	0.500 µg/L
27	Chloroethane	ND	0.500 µg/L
28	Chloroform	ND	0.500 µg/L
29	Chloromethane	ND	0.500 µg/L
30	2-Chlorotoluene	ND	0.500 µg/L
31	4-Chlorotoluene	ND	0.500 µg/L
32	Dibromomethane	ND	0.500 µg/L
33	1.3-Dichlorobenzene	ND	0.500 µg/L
34	1,1-Dichloroethane	ND	0.500 µg/L
35	1,1-Dichloropropene	ND	0.500 µg/L
36	1,3-Dichloropropane	ND	0.500 µg/L
37	cis-1,3-Dichloropropene	ND	0.500 µg/L

	Compound	µg/L	Limit	-
38	trans-1,3-Dichloropropene	ND	0.500	µg/L
39	2,2-Dichloropropane	ND	0.500	µg/L
40	1,1,1,2-Tetrachloroethane	ND	0.500	µg/L
41	1,1,2,2-Tetrachloroethane	ND	0.500	µg/L
42	1,2,3-Trichloropropane	ND	0.500	µg/L
43	Bromochloromethane	ND	0.500	µg/L
44	n-Butylbenzene	ND	0.500	µg/L
45	Dichlorodifluoromethane	ND	0.500	µg/L
46	Trichlorofluoromethane	ND	0.500	µg/L
47	Hexachlorobutadiene	ND	0.500	µg/L
48	Isopropylbenzene	ND	0.500	µg/L
49	4-Isopropyltoluene	ND	0.500	µg/L
50	Naphthalene	ND	0.500	µg/L
51	n-Propylbenzene	ND	0.500	µg/L
52	sec-Butylbenzene	ND	0.500	µg/L
53	tert-Butylbenzene	ND	0.500	µg/L
54	1,2,3-Trichlorobenzene	ND	0.500	µg/L
55	1,2,4-Trimethylbenzene	ND	0.500	µg/L
56	1.3.5-Trimethylbenzene	ND	0.500	µg/L
57	Methyl tert-butyl ether (MTBE)	ND	0.500	µg/L

Concentration

pH = 2

ND = Not Detected

Phase I Regulated Compounds (1-8); Phase II Regulated Compounds (9-18); Phase V Regulated Compounds (19-21); List 1 Unregulated Compounds (22-41); List 3 Unregulated Compounds (42-56); and, Additionally requested Compounds (57+)

Approved By:

alter in Walter Hinchman

Quality Assurance Officer

Date: 6/21/00

1.88 As a start of the Theory of the Start of the Start of the Start of the Theory of the Start T22 (S80) and applied to the Start of the Start o

ANALYTICAL REPORT

Client: Washoe County Water Resources	Lab Sample ID: 00060947-01A
4930 Energy Way	Date Sampled: 6/9/00
Reno, NV, 89502	Date Received: 6/9/00
Attn: Terri Svetich	Matrix: Drinking Water
Client Sample ID: Tessa Well #2 (East)	PWS/DWR#:

National Primary Drinking Water Phase II and Phase V - Regulated and Unregulated Synthetic Organic Compounds (SOCs)

Analyte		Result	R.L.	Units	Date Analyzed	Analyte	Result	R.L.	Units	Date Analyzed
E504.1	EDB AND DBCP					E525.2 SVOCS BY GCMS				
1,2-Dibrom	oethane	ND	0.010	μg/L	6/15/00	Propachlor	ND	1.0	µg/L	6/26/00
1,2-Dibrom	o-3-chloropropane	ND	0.020	μg/L	6/15/00	Simazine	ND	0.070	μg/L	6/26/00
E505	ORGANOHALIDE I	PESTICIDI	ES ANI	PCBS	1	Atrazine	ND	0.10	μg/L	6/26/00
Hexachloro	cyclopentadiene	ND	0.10	μg/L	6/14/00	Metribuzin	ND	1.0	μg/L	6/26/00
Hexachloro		ND	0.10	μg/L	6/14/00	Alachlor	ND	0.20	μg/L	6/26/00
gamma-BH	С	ND	0.020	· •	6/14/00	Metolachlor	ND	1.0	μg/L	6/26/00
Alachlor		ND	0.20	μg/L	6/14/00	Butachlo r	ND	1.0	μg/L	6/26/00
Heptachlor		ND		· •	6/14/00	bis(2-Ethylhexyl)adipate	ND	0.60	μg/L	6/26/00
Aldrin		ND	0.20	μg/L	6/14/00	bis(2-Ethylhexyl)phthalate	ND	0.60	µg/L	6/26/00
Heptachlor	epoxide	ND	0.020	μg/L	6/14/00	Benzo(a)pyrene	ND	0.020	μg/L	6/26/00
Dieldrin		ND	0.20	μg/L	6/14/00	E531.1 CARBAMATES				
Endrin		ND	0.010	μg/L	6/14/00	Aldicarb sulfoxide	ND	0.50	μg/L	6/22/00
Methoxychl	lor	ND	0.10	μg/L	6/14/00	Aldicarb sulfone	ND	0.80	μg/L	6/22/00
Chlordane		ND	0.20	μg/L	6/14/00	Oxamyl	ND	2.0	μg/L	6/22/00
Toxaphene		ND	1.0	μg/L	6/14/00	Methomyl	ND	1.0	μg/L	6/22/00
Aroclor 101	6	ND	0.080	µg/L	6/14/00	3-Hydroxycarbofuran	ND	1.0	µg/L	6/22/00
Aroclor 122	1	ND	20	μg/L	6/14/00	Aldicarb	ND	0.50	μg/L	6/22/00
Aroclor 123	2	ND	0.50	µg/L	6/14/00	Carbofuran	ND	0.90	μg/L	6/22/00
Aroclor 124	2	ND	0.30	μg/L	6/14/00	Carbaryl	ND	1.0	μg/L	6/22/00
Aroclor 124	-	ND	0.10	μg/L	6/14/00	E547 GLYPHOSATE				
Aroclor 125	4	ND	0.10	μg/L	6/14/00	Glyphosate	ND	6.0	µg/L	6/12/00
Aroclor 126	0	ND	0.20	μg/L	6/14/00	••		0.0	r8-	
E515.1	CHLORINATED AC	ID HERBI	CIDES				ND	0.0		6/16/00
Dalapon		ND	1.0	μg/L	6/24/00	Endothall	ND	9.0	μg/L	0/10/00
Dicamba		ND	0.50	μg/L	6/24/00	E549.2 DIQUAT/PARAQU	JAT			
2,4-D		ND	0.10	μg/L	6/24/00	Diquat	ND	0.40	μy/L	6/14/00
PCP		ND	0.040	μg/L	6/24/00					
2,4,5-TP		ND		μg/L	6/24/00					
Dinoseb		ND	0.20	μg/L	6/24/00					
Pichloram		ND		μg/L	6/24/00					

ND = Not Detected

Approved By:

alter Ainelnur 4

Walter Hinchman Quality Assurance Officer Date:

7/3/00

Easting as No. • The resolution of Successful A. • The mathematic Republic Structure and the providence of the second structure of the second structur othe Wallback States and States

RECEIVED

MONTGOMERY WATSON LABORATORIES

e Division of Montgomery Watson Americas, Inc. 555 East Walnut Streat Pasadene, California 91101 Te1: 828 568 6400 Fax: 826 568 6324 1 800 566 LABS (1 800 566 5227) TESSA AU-2 (CAST) JUN 2 1 2000 WASHOE COUNTY DEPT. OF WATER RESOURCES

Laboratory Report

for

Washoe County Dept. of Water Resources 4930 Energy Way

Reno, NV 89502-4106

Attention: John Hulett Fax: (775) 954-4610

DATE OF ISSUE JUN 1 OMP SON LABS

HDS Hillary Strayer Project Manager

Report#: 66925 DRINKING

aboratory certifies that the test results meet all QA/QC requirements unless oted in the Comments section or the Case Narrative. Following the cover page are QC Report,QC Summary,Data Report, totaling 3 page[s].

	ACKNOWLEDGMEN	T OF SAMPLES RECEIVED	
Washoe County 4930 Energy W Reno, NV 8950 Attn: John Hu	2-4106	urces ustomer Code: WASHOE PO#: 179701 Group#: 66925 Project#: DRINKING Proj Mgr: Hillary Stray Phone: (626) 568-641	er 2
is incorrect,	the tests listed be	side each sample. If this :	ney have been information nank you for
Sample# Sample	e Id Tests Sched	Matrix uled	Sample Date
2006120121 TESSA	PW 2 RN	Water	06/09/00
	Test Acr	onym Description	
Test Acronym	Description		
RN	Radon 222		н е на полно и на полно на пол
•			
			• •
	_		

(

TESSA Pw. 2 (mst)

Laboratory Data Report #66925

MONTGOMERY WATSON LABORATORIES
a Division of Montgomery Watson Americas, Inc.
555 East Walnut Street
Pasadena, California 91101
Tel: 826 568 6400 Fex: 826 568 6324
1 800 566 LABS (1 800 566 5227)

Washoe County Dept Resources	. of Water	Samples Received
John Hulett 4930 Energy Way Reno , NV 89502-4	4106	06/12/00 .

repared	Analyzed	QC Batch# Method	Analyte		Result	Units	MRL	Dilution
TESSA	PW 2	(2006120121)	Sampled on	06/09/00	10:00			<u> </u>
		Radon	222					

06/12/00 10:34	117765	(SM7500RN) Radon 222	1000	pCi/l	50	,
06/12/00 10:34	117765	(SM7500RN) Radon 222, Two Sigma Error	31.7	pCi/l	0.0000	1

(TESSA Pw-2 (cast)

MONTGOMERY WATSON LABORATORIES a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasadena, California 91101 Te1: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227) Laboratory QC Summary #66925

Washoe County Dept. of Water Resources

C Batch #117765 - Radon 222

2006120121

TESSA PW 2

Analysis Date: 06/12/2000

(TESSA PW.2 (east)

MONTGOMERY WATSON LABORATORIES a Division of Montgomery Watson Americas, Inc. 555 East Walnut Street Pasedene, California 31101 Tel: 626 568 6400 Fax: 626 568 6324 1 800 566 LABS (1 800 566 5227) Laboratory QC Report #66925

Washoe County Dept. of Water Resources

QC Batch #117765 Radon 222

QC	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
LCS1	Radon 222	1000	919	91.9	(80.00 - 120.00)	• • •
LCS2	Radon 222	1000	941	94.1	(80.00 - 120.00)	
MBLK	Radon 222	ND			(00.00 - 120.00)	4.1

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for MS and DUP are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

APPENDIX D-Cost Proposal and Specifications

Layne Christensen Company

P.O. Box 1326 Zip: 95776 • 275 County Road 98 • Woodland, California 95695 • (916) 662-2825 • Fax: (916) 662-2896

October, 12 1998

Randy Bowling Consulting 5310 Kietzke Lane Suite 204 Reno, Nevada 89502

Subject: Proposal for drilling Galena Water Enterprises Wells in the Vicinity of Mount Rose Highway.

Dear Mr. Bowling:

Thank you for the opportunity to bid on Galena Water Enterprises up coming well drilling project near the Mount Rose highway. We have incorporated into the cost the necessary engineering and a project manager for the project. Please find below the bid items for the two production wells and two monitoring wells.

	Galena Wate	er Enterprises	, LLC		
ITEM	Two Production Wells, W DESCRIPTION	QUANTITY	mpleted T	est Holes	·····
,		QUANTITY	UNIT	UNIT PRICE	TOTAL
1.	Mobilization & Demobilization for construction, testing and site rehabilitation for test holes and monitoring wells and two production wells.	1	L.S.	\$25,000.00	\$25,000.0
2.	Standby hours at Owner's request.				
		24	Hr.	\$120.00	\$2,880.00
3.	Drill 26-inch minimum diameter borehole to a depth of 100 feet per well.	200	L.F.	\$166.00	\$33,200.00
4.	Furnish and install 22-inch diameter conductor casing to a depth of 100 feet per well.	202	L.F.		
5.	Furnish and install 100-foot sanitary grout	202	L.F.	\$64.00	\$12,928.00
	seal per well monitoring and production wells.	1	L.S.	\$10,000.00	\$10,000.00
6.	Drill 20-inch minimum diameter production casing borehole from 100 to approximately 700 per well.	1,200	L.F	5 80.00	
ба.	Drill 6-inch minimum diameter borehole		<u> </u>	\$80.00	\$96,000.00
	to a depth of 700 feet per well	1,400	L.F.	\$10.00	\$14,000.00
<u>6</u> b.	Geophysical logs for two boreholes	2	Log	\$1,500.00	\$3,000.00
7.	Furnish and install 14-inch diameter blank production casing, approximately 460 feet per well.	920	 L.F.	\$35.00	
7a.	Furnish and install 2-inch diameter blank steel well casing, approximately 460 feet per well.	920	L.F.		\$32,200.00
8.	Furnish and install 14-inch diameter wire wrap well screen, approximately 240 feet per well.			\$7.00	\$6,440.00
8a.	Furnish and install 2-inch diameter slotted steel casing, approximately 240 feet per	480	<u>L.F.</u>	\$47.00	\$22,560.00
	well.	480	L.F.	\$10.00	\$4,800.00

9.	Furnish and install design gravel pack.		1		1
		55	Cu. Yd.	\$200.00	\$11,000.00
10.	Airlift development by surging.				
		110	Hr.	\$225.00	\$24,750.00
11.	Furnish, install, and remove necessary				
	equipment for development and test				
	pumping	900	L.F.	\$12.00	\$10,800.00
12.	Well development by pumping.				010,000.00
		48	Hr.	\$130.00	\$6,240.00
13.	Operate and maintain necessary			·····	
	equipment for test pumping.	160	Hr.	\$130.00	\$20,800.00
14.	Video survey of the wells				\$20,000.00
		1	L.S.	\$2400.00	\$2,400.00
15.	Plumbness and alignment test using				
	Gyroscopic Deviation survey.	L L	L.S.	\$4800.00	\$4,800.00
16.	Well disinfection and capping, including				J77,000.00
	welding doughnut ring seal.	1	L.S.	\$2000.00	\$2.000.00
16a.	Lockable, protective well caps for two			\$2,000.00	\$2,000.00
	monitoring wells.	2	Each	\$500.00	\$1000.00
					0.000.00
·	TOTAL				\$346,798.00

To help clarify all the services Layne Christensen Company is providing, I have included a detail description with specifications of the entire project.

WELL CONSTRUCTION:

<u>Borehole-</u> The conductor boreholes shall be a minimum diameter of 26-inches to a depth of 100 feet. The production boreholes shall be a minimum diameter of 20-inches. The anticipated total depth for the production boreholes are 720 feet. It is our intention to drill a 12-1/4 inch pilot hole to a total depth of 720 feet before reaming the production hole out to 20-inches.

Formation samples shall be collected at 10-foot intervals and at each change in formation. Samples shall be labeled and stored in Ziploc freezer bags or approved equal. Layne Christensen shall have a grain size analysis performed on a minimum of four formation samples for engineering the final gravel pack and screen slot size for each well.

Drilling Fluid- When it becomes necessary to add clays and chemicals to the drilling fluid, Layne Christensen will maintain a mud system containing a minimum of clay and fine sand and shall deposit a thin, easily removable filter cake on the face of the borehole. Drilling fluid properties shall be monitored at each 100 feet of borehole drilled. Properties that will be monitored will include density, viscosity, fluid-loss control effectiveness, and mud cake thickness. Records of the fluid properties will be logged on the daily drill reports.

<u>Conductor and Production Well Casing</u>- All conductor and production well casing shall be of new, first quality materials and free of defects in workmanship and handling. Conductor and production well casing shall be black steel pipe, spiral welded or invisible straight seam. Steel for fabricated pipe shall conform to ASTM Standard A 283 Grade B or better. For the conductor casing, the outside diameter shall be 22 inches with a minimum wall thickness of 0.375 inches. For the production well casing, the outside diameter shall be 14 inches with a minimum wall thickness of 0.250 inches.

<u>Well Screen-</u> Well screen shall be wire wrap or continuous slot. Well screen will be of new, first quality material, free of defects in workmanship or handling. The well screen will be constructed of low carbon steel and have a minimum strength of construction recommended by the manufacturer. Well screen shall have an outside diameter of 14 inches. A blank casing sump, five feet in length shall be added to the well screen. The bottom of the sump shall be covered with a steel rounded bullnose plug fabricated of the same material as the 14-inch diameter production casing. Final selection for the well screen slot size will be added to the screen slot size will be added to be screen slot size slot screen slot size slot screen slot slot screen slot screen slot slot screen slot slot screen slot sc

determined from the sieve analysis with recommendations. For bid purposes, Layne Christensen has anticipated a design size of 80 slot (0.08 inches).

<u>Conductor Casing Installation</u>- Conductor casing shall be equipped with centering guides that will be placed starting five (5) feet above the bottom of the casing and approximately every thirty (30) feet thereafter. The top of the conductor casing shall extend one (1) foot above land surface.

<u>Grout Surface Seal Installation</u>- The annular space between the 26-inch borehole and conductor casing shall be sealed with a cement grout slurry mix from borehole bottom to the ground surface. The slurry mix shall be placed by positive displacement through a tremmie pipe. The seal shall be placed in one continuous operation once the process begins. The sanitary seal shall be left undisturbed for 24 hours for the cement to curry properly.

<u>Casing</u>. Screen and Gravel Installation- The casing and screen will be suspended above the bottom of the hole at a sufficient distance to insure that neither will be supported from the bottom. Centering guides shall be installed every fifty-(50) foot on the casing and screen. A gravel feed tube shall be installed to allow periodic checking of the gravel pack level.

<u>Gravel</u>- The gravel will be composed of sound, durable, well-rounded particles containing no silt, clay, organic matter or deleterious materials. Placement of gravel shall be through a two-(2) inch minimum diameter tremmie pipe. The gravel pack will be sterilized by mixing a minimum of thirty (30) pounds of 65% granulated calcium hypochlorite with the gravel during placement.

DEVELOPMENT

<u>Surging</u>- Initial development of the well will be airlift development using a ten-(10) foot double surge block and perforated pipe. Development by surging will begin at the top of the screen and shall move downward gradually to within five (5) feet of the bottom of the well. Once one complete pass of the well has been made, development by surging shall continue back up the screen intervals until it is the opinion of the owner and Washoe County that development is complete. A temporary discharge permit from the State of Nevada of Environmental Protection will be required for each well. Layne Christensen shall obtain these permits and submit the required monthly discharge monitoring reports.

<u>Development Pumping</u>- Layne Christensen shall furnish, install, operate and remove a lineshaft turbine pump for developing the well. Discharge piping of sufficient size and length to divert water away from the wellhead and pumping equipment will also be supply by contractor. A one (1) inch diameter PVC stilling well will be installed in the well so that Washoe County can record pumping water levels at their discretion. The initial pumping rate shall be restricted and as the water clears, the rate shall be gradually increased until the maximum is reach. Washoe County will determine the maximum rate after consideration of the well drawdown and discharge characteristics. At periodic intervals, the pump shall be stopped and water in the pump column shall be allowed to surge back through the pump bowls and into the well. While pumping and surging, Layne Christensen shall periodically measure the gravel level through the gravel feed tube and add gravel if necessary.

PUMPING TESTS AND DISINFECTION

Layne Christensen shall perform a complete pumping test of the wells. Test pumping shall be directed by the Washoe County Department of Water Resources with a pumping scenario to include:

<u>Step Test-</u> The two wells will be pumped at four different rates for a minimum of 100 minutes. Following the completion of the step test, the well will be given a minimum of twelve (12) hours to recover before beginning the constant rate discharge test. Actual measurements taken while testing for yield and drawdown will be the dual responsibility of Layne Christensen and Washoe County Department of Water Resources. Each constant rate discharge test will be maintained for a minimum of 72 hours. At the end of the 72-hour pumping period, the pump will remain in the well for 24 hours so that Washoe County can collect recovery data on the well. Before the pump is removed, the well shall be disinfected by adding 20

pounds of approximately 65-70 percent calcium hypochlorite tablets. The pump shall be turned on and off several times to thoroughly mix the disinfection solution in the well.

PLUMBNESS AND ALIGNMENT

Layne Christensen shall guarantee that the well when completed, shall be sufficiently straight and plumb to permit the free installation and operation of a submersible or line shaft turbine regularly recommended to be installed in 14-inch diameter well casing. Layne Christensen shall conduct a Gyroscopic directional survey of the total depth of the well to verify plumbness and alignment. The Gyroscopic directional tool shall record the measured depth, the direction the casing is traveling and the angle or inclination of the casing. The survey shall be recorded on VHS tape format with reading every 10 to 50 feet. A deviation from plumbness not greater than two-thirds (2/3) the well's inside diameter per 100 feet to the top of the well screen will be guaranteed by Layne Christensen Company.

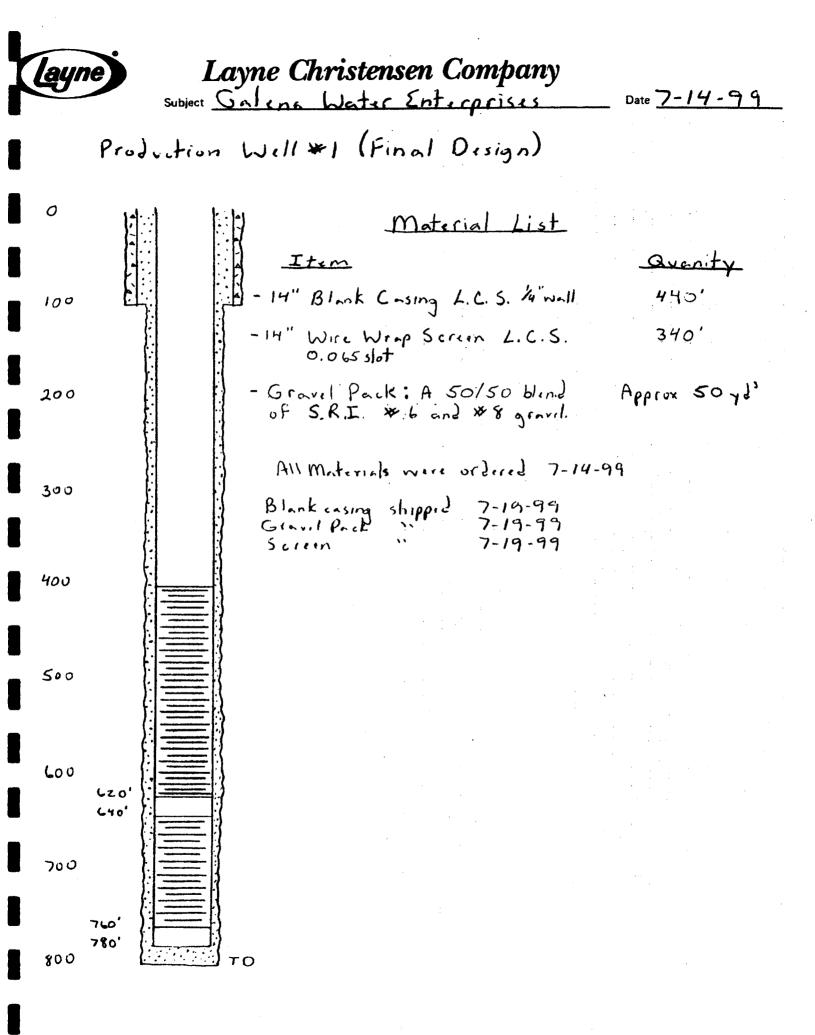
VIDEO SURVEY

Each well will be surveyed by a downhole video camera capable of viewing the well both vertically and horizontally. The survey will be recorded on a VHS format with a copy of the tape given to the owner.

WELL CAP

The production casing shall be capped with a 0.250-inch minimum thickness steel plate fully welded to the casing. A lockable access cap with a minimum outside diameter of 2.375 inches shall be welded to the plate to allow access for measuring the static water level in the well.

All costs include materials, labor, permits, and taxes to complete two test holes and two production wells. All final well designs will be approved by the Washoe County Department of Water Resources.


Surveying of the exact locations for the test holes and production wells will be the responsibility of Galena Water Enterprises. If access to the test hole locations and well locations require the development of roads, it will be the responsibility of Galena Water Enterprises to construct the necessary access roads for Layne Christensen's equipment to reach the sites. If you have any questions or concerns regarding this proposal, please do not hesitate to call.

Sincerely,

242723

Michael Hardy Contracting Engineer

Pagel Layne Christensen Company layne Water Enterprises PW-2 Date 10-15-99 Subject Galena Final Well Design For Production Well#2 0 -24" blank casing 28" borehole 100' 100 22" borchole 200 300 14" blank ensing 400 440' 14" wire wrap scriin (D. 065 slot) 500 540' 14" blank casing

600

- 14" WIRE WRAP SCRIP (0.065 slot)

710' (Bottom of Screin) 715' (Bottom of 5' sump Pipe) 735' (Bottom of borchole)

800

700

APPENDIX E-List of Available Information at Washoe County

List of Available Information @ Washoe County Department of Water Resources:

Electronic data files (test pumping) Plumbness and Alignment Tests Video Camera Logs of Completed Wells Geophysical Logs Detailed Geologists Logs Water Right Documents Drillers Daily Work Logs

16